Foundations of Robust and Trustworthy Algorithms for Machine Learning
Kushagra Chandak, Bingshan Hu, and Nidhi Hegde. “Differentially Private Algorithms for Efficient Online Matroid Optimization”. In: The Conference on Lifelong Learning Agents (CoLLAs). 2023
Bingshan Hu, Tianyue Zhang, Nidhi Hegde, and Mark Schmidt. “Optimistic Thompson Sampling-based Algorithms for Episodic Reinforcement Learning”. In: The 39th Conference on Uncertainty in Artificial Intelligence. 2023. URL: https://openreview.net/forum?id=XfpmehHGo2.
Akash Saravanan, Dhruv Mullick, Habib Rahman, and Nidhi Hegde. “FineDeb: A Debiasing Framework for Language Models”. In: The Workshop on Artificial Intelligence for Social Good at AAAI 2023. 2023. URL: https://amulyayadav.github.io/AI4SG2023/images/24.pdf.
Kirby Banman, Garnet Liam Peet-Pare, Nidhi Hegde, Alona Fyshe, and Martha White. “Resonance in Weight Space: Covariate Shift Can Drive Divergence of SGD with Momentum”. In: International Conference on Learning Representations. 2022. url: https://openreview.net/forum?id=5ECQL05ub0J.
Nidhi Hegde and Gaurav Sharma. “Privacy-preserving predictions for large evolving graphs”. In: Theory and Practice of Differential Privacy (TPDP). 2022. URL: https://openreview.net/forum?id=pIalgWjrinC.
Bingshan Hu and Nidhi Hegde. “Optimal Thompson Sampling-based Algorithms for Differentially Private Stochastic Bandits”. In: The 38th Conference on Uncertainty in Artificial Intelligence. 2022. URL: https://openreview.net/forum?id=Bfzg8d8j9x5.
Garnet Liam Peet-Pare, Nidhi Hegde, and Alona Fyshe. “Long Term Fairness for Minority Groups via Performative Distributionally Robust Optimization”. In: Responsible Decision Making in Dynamic Environments, workshop at ICML 2022. 2022. URL: https://responsibledecisionmaking.github.io/assets/pdf/papers/35.pdf.
Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E. Taylor, and Nidhi Hegde. “Multi Type Mean Field Reinforcement Learning”. In: (to appear) Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2020. 2020.
Arpan Mukhopadhyay, Nidhi Hegde, and Marc Lelarge. “Asymptotics of Replication and Matching in Large Caching Systems”. In: IEEE/ACM Transactions on Networking 27.4 (2019), pp. 1657–1668. DOI: 10.1109/TNET.2019.2926235. URL: https://doi.org/10.1109/TNET.2019.2926235.
Baoxiang Wang and Nidhi Hegde. “Privacy-Preserving Q-Learning with Functional Noise in Continuous Spaces”. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada. 2019, pp. 11323–11333. URL: http://papers.nips.cc/paper/9310-privacy-preserving-q-learning-with-functionalnoise-in-continuous-spaces.
Nidhi Hegde. “ACM Sigmetrics Performance Evaluation Review: A New Series on Diversity, an editorial”. In: Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2018, Irvine, CA, USA, June 18-22, 2018. ACM, 2018, p. 139. doi: 10.1145/3219617.3219675. URL: https://doi.org/10.1145/3219617.3219675.
Arpan Mukhopadhyay, Nidhi Hegde, and Marc Lelarge. “Optimal Content Replication and Request Matching in Large Caching Systems”. In: IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018. IEEE, 2018, pp. 288–296. DOI: 10.1109/INFOCOM.2018.8486229. URL: https://doi.org/10.1109/INFOCOM.2018.8486229.
Fabio Cecchi and Nidhi Hegde. “Adaptive Active Hypothesis Testing under Limited Information”. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA. 2017, pp. 4035–4043.
Sara Alouf, Alain Jean-Marie, Nidhi Hegde, and Alexandre Proutière, eds. Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, Antibes Juan-Les-Pins, France, June 14-18, 2016. ACM, 2016. ISBN: 978-1-4503-4266-7. DOI: 10.1145/2896377. URL: https://doi.org/10.1145/2896377.
Siddhartha Banerjee, Nidhi Hegde, and Laurent Massoulié. “The Price of Privacy in Untrusted Recommender Systems”. In: Selected Topics in Signal Processing, IEEE Journal of 9.7 (2015). (impact factor: 2.569), pp. 1319–1331. ISSN: 1932-4553. DOI: 10.1109/JSTSP.2015.2423254.
Nidhi Hegde, Laurent Massouli´e, and Laurent Viennot. “Self-Organizing Flows in Social Networks”. In: Theoretical Computer Science 584 (Feb. 2015). (impact factor: 0.643), pp. 3–18. DOI: 10.1016/j.tcs.2015.02.018. URL: https://hal.inria.fr/hal-00761046.
Julien Herzen, Henrik Lundgren, and Nidhi Hegde. “Learning Wi-Fi performance”. In: 12th Annual IEEE International Conference on Sensing, Communication, and Networking, SECON 2015, Seattle, WA, USA, June 22-25, 2015. (acceptance rate: 28%). 2015, pp. 118–126. DOI: 10.1109/SAHCN.2015.7338298. URL: http://dx.doi.org/10.1109/SAHCN.2015.7338298.
Ji Zhu, Stratis Ioannidis, Nidhi Hegde, and Laurent Massoulié. “Stable and scalable universal swarms”. English. In: Distributed Computing 28.6 (Dec. 2015). (impact factor: 1.263), pp. 391–406. ISSN: 0178-2770. DOI: 10.1007/s00446- 014- 0228- 1. URL: http://dx.doi.org/10.1007/s00446-014-0228-1.
Zeinab Abbassi, Nidhi Hegde, and Laurent Massoulié. “Distributed Content Curation on the Web”. In: ACM Transactions Internet Technology 14.(2–3) (Oct. 2014), 9:1–9:15. ISSN: 1533-5399. DOI: 10.1145/2663489. URL: http://doi.acm.org/10.1145/2663489.
Zeinab Abbassi, Nidhi Hegde, and Laurent Massoulié. “Distributed Content Curation on the Web”. In: Proc. W-PIN+NetEcon, the joint Workshop on Pricing and Incentives in Networks and Systems. June 2013.