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Volume 2, Issue 4, Pages 235-253.



(1) Opportunity: Why Interpretability?

Interpret Black-Box Models 3
J
* Necessity for Human-in-the-loop.
° NeceSSity to build trust for AnalytiCS. e Needto incorporate user expertise in
decisions.

* Most machine learning models and
data analysis algorithms are black-box. * Essential to proactively guide users in the
complex data analysis.

Q Engage Users in Decision Making

* Users do not use what they don't
understand or trust.




(2) Experimental Methodology

* Compare 15 Dimensionality Reduction Algorithms
e For 7 Contextual Evaluation Metrics
* Using over 30 Real-world Datasets

* Evaluate with 6 Statistical Significance Tests
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Execute | Calculate Analyze Statistical
Algorithms Friedman Ranks Significance e




(3) Experimental Results

Evaluation .
. Best Mediocre Worst
Metric
ML Accuracy KernelPCA, PCA FIt-SNE, LEM LTSA, HLLE
Execution Time PCA, Isomap openTSNE, LTSA MDS, LEM
Local Structure MDS, openTSNE FIt-SNE, UMAP LLE, Isomap
Global Structure MDS, KernelPCA LEM, HLLE Trimap, t-SNE
Outlier Effects LTSA, Isomap t-SNE, openTSNE LLE, MLLE

Duplicate Effects

Partial Records

t-SNE, Trimap

PCA, KernelPCA

HLLE, LEM

UMAP, Trimap

MDS, KernelPCA

FIt-SNE, t-SNE




(4) New Algorithm - IDLE

* Even with generic guidelines, dimensionality reduction lacks in interpretability.

 Most real-world data sets are distributed over non-linear manifolds.

* Hence linear distance among data-points does not project their actual distances.

MANIFOLD

Eumemmce

GEODESIC DISTANCE

Proposed Solution:

IDLE: Interactive Descriptions for Low-dimensional

Embedding




@ IDLE: Interactive Descriptions for Low-dimensional

Embedding
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(6) Example — Explaining t-SNE*
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* t-Distributed Stochastic Neighbor Embedding e




UNIVERSITY OF

@ ALBERTA

THANK YOU

DAl aindrila@ualberta.ca




