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* The research objective is based on our paper:



Opportunity: Why Interpretability?

• Necessity to build trust for Analytics.  

• Most machine learning models and 
data analysis algorithms are black-box.

• Users do not use what they don’t 
understand or trust.
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Interpret Black-Box Models

Engage Users in Decision Making
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• Necessity for Human-in-the-loop.

• Need to incorporate user expertise in  
decisions.

• Essential to proactively guide users in the 
complex data analysis.
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Experimental Methodology2

• Compare 15 Dimensionality Reduction Algorithms

• For 7 Contextual Evaluation Metrics

• Using over 30 Real-world Datasets

• Evaluate with 6 Statistical Significance Tests

Execute 
Algorithms

Calculate 
Friedman Ranks

Analyze Statistical 
Significance



Experimental Results3
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Evaluation 
Metric

Best Mediocre Worst 

ML Accuracy KernelPCA, PCA FIt-SNE, LEM LTSA, HLLE

Execution Time PCA, Isomap openTSNE, LTSA MDS, LEM

Local Structure MDS, openTSNE FIt-SNE, UMAP LLE, Isomap

Global Structure MDS, KernelPCA LEM, HLLE Trimap, t-SNE

Outlier Effects LTSA, Isomap t-SNE, openTSNE LLE, MLLE

Duplicate Effects t-SNE, Trimap HLLE, LEM MDS, KernelPCA

Partial Records PCA, KernelPCA UMAP, Trimap FIt-SNE, t-SNE



• Even with generic guidelines, dimensionality reduction lacks in interpretability.

• Most real-world data sets are distributed over non-linear manifolds.

• Hence linear distance among data-points does not project their actual distances.

Proposed Solution:

IDLE: Interactive Descriptions for Low-dimensional 

Embedding

New Algorithm - IDLE4
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IDLE: Interactive Descriptions for Low-dimensional 
Embedding5
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Example – Explaining t-SNE*6
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Dataset: Bank (Source: UCI)

• 45,211 data-points

• 17 attributes

• Interactive Selection of one data-point

• Highly Influencing Attributes: 6

• Positive Influences: 4 attributes

• Negative Influences: 2 attributes

* t-Distributed Stochastic Neighbor Embedding
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