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Motivation: Why Labels?

• Essential to build supervised machine 
learning models.  

• The quality and the size of training data 
limits the performance of predictive 
systems.

• Labeled training datasets do not exist.

Derive Value from Business Data

Obtaining Accurate Labels is 
Expensive

Guru Banavar, IBM data scientist

• About 70% of complex analytical tasks today 
are related to data preparation. There have to 
be people who are preparing and labeling data 
for machines to understand. Here’s a situation 
in which human labor automation driven by 
ML creates new job opportunities.
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Treats active learning algorithm 
design as a meta-learning problem 
and learn the best criterion from 
data

Meta Active Learning

Automating the process of 
generating heuristics that assign 
training labels to unlabeled data

Automating Weak Supervision

Learns a model of the training set 
that includes labeling functions.

Data Programming

Gets a lower-quality labels more 
efficiently and/or at a higher 

abstraction level 

Weak Supervision

Proposed Solution: LaBiD2

LaBiD

</>
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Overall Architecture3
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Use Generative Model to 
generate Labels
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Use the labeled dataset to 
train a classifier
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Results: DALP Vs. Other Labelling Techniques
Experimental Results 4

Higgs 11,000,000 28

Renewal Sales 1,354,704 11

Rain Prediction 142,000 24

Travel Insurance 63,300 11

Bank 45,211 17

News 39,797 61

Credit Card 30,000 24

Tenancy Detection 20,560 7

Magic 19,020 12

Dataset # of records # of attributes

DATASETS USED IN THE EXPERIMENTS

EXISTING APPROACHES

Data Programming

Active Learning

Meta Active Learning

Automated Weak Supervision
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PREDICTION PERFORMANCE LABELS ACCURACY

Experimental Results 4
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Application to Database

• Never assume the data is clean.

• Automatically create heuristics.

• Apply the LaBiD flow and compare the 
results with ground truth.

• Double check with the user to detect 
outliers and missing values.

Analytics challenges

Next steps…
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• Bad data is bad for business. Poor quality data is 
costing businesses at least 30% of revenues.

Reported by Ovum Research 
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