Cardiac Right Ventricular Segmentation via Point Correspandence
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Abstract— This study presents an approach to the segmen- overcome these difficulties, most of the existing methods us
tation of the right ventricle (RV) from a sequence of cardiac  atlas-based techniques [5], [6] or prior geometric prapert
magnetic resonance (MR) images. Automatic delineation ohe [7], [8], such as the shape of the RV learregriori from a

RV is difficult because of its complex morphology, thin and il- L L L .
defined borders, and the photometric similarities between hie finite-training set. If only shapes similar to the trainirgg are

connected cardiac regions such as papillary muscles and hea allowed, the use of active shape and appearance models can
wall. Further, geometric/photometric models are hard to bild  lead to a realistic solution. However, the optimization wéls

from a finite training set because of the significant differees  models does not always guarantee the global optima. The
in size, shape, and intensity between subjects. In this styd  y5in grawbacks of statistical shape or atlas based apgeach

we propose to use a non-rigid registration method developed th - t of | I ted traini
recently to obtain the point correspondence in a sequence of are the requirement or large manually segmented fraining

cine MR images. Given the segmentation on a first frame, the Se€ts and the results highly dependent on the choice of the
proposed method segments both endocardial and epicardial training data. The results often biased towards a particula
borders of the RV using the obtained point correspondence, cardiac pathology.

and relaxes the need of a training set. The proposed method is Further, the shape of the RV is significantly different

evaluated quantitatively on common data set by comparison t end tole i . t d-diastole. Theref .
with manual segmentation, which demonstrated competitive at end-systole in comparison to end-aiastole. ereiore, |

results in comparison with recent methods. general, it is more difficult to obtain a good segmentation of
the RV at end-systole than at end-diastole using the shape-
|. INTRODUCTION based approaches. The results published by the recent RV

Assessment of right ventricular (RV) function is importanse€gmentation challenge at the MICCAI 2012 conference
in the diagnosis of cardiovascular diseases [1]. Clinic&ihow that most of the existing methods have the highest
measurements such as the RV ejection fraction (EF) af§gmentation error at end-systole. The best reported Dice
volumes have important diagnostic, prognostic, and ther&etric (DM) values among the seven participants were
peutic implications in patients with acquired heart digeas@nd0.77 for endocardium and epicardium, respectively. Due
who need cardiac function follow-up [2], [3]. MagnetictO its smaller size, inaccuracies in the segmentation of the
resonance (MR) imaging allows an exhaustive RV evaluatioV at end-systole affect the clinical measurements such as
with high spatial resolution, and provides a large numbdgF significantly.
of images. MR imaging has several important advantages TO tackle the problem of delineation of the RV, we propose
over echocardiography, including excellent image qualitg 0 Use point correspondence using a non-rigid registration
lack of geometric assumptions. For quantitative functiondne€thod developed recently [9]. Given the segmentationef th
analysis and to obtain clinical measurements such as EF/ifst frame, the proposed method segments both endocardial
is essential to delineate the RV. Manual delineation of ttie Rand epicardial borders of the RV using the obtained point
boundary in all MR imagésis tedious and time-consuming, correspondence. The proposed method has several advan-
and automating the process has been the subject of an intef@es over existing ones: (1) a shape prior is not needed
research effort recently [4]. to obtain satisfying RV segmentations because the point

Due to its complex morphology and function, assessmefpPrrespondence can track any curve in the image sequence;
of the RV is acknowledged as a more challenging probler?) the distributions of intensity or shape data is not agsiim
than the assessment of the left ventricle. The problem bahd relaxes the need of a training set; (3) the method is
comes more difficult due to thin and ill-defined RV bordersmore flexible for congenital heart disease where the RV
its crescent shaped structure, and the complex defornsatidd more variable in shape. Using registration to delineate
of the RV chamber. Further, the RV segmentation method8€ RV is advantageous in that it provides the sequence of
should also consider the photometric similarities betwee$Prresponding points over time, a useful attribute in many
the connected cardiac regions, for instance, the papilIal&f{irdiaC applications such as wall motion analysis. Further
muscles and heart wall have approximately the same inteile Proposed method allows RV volumetric analysis over the
sity. Therefore, standard segmentation methods basely soleomplete cardiac cycle as it provides segmentation at each

on intensity information cannot yield accurate tracking. T Step in the cycle. _ o
The proposed method is evaluated quantitatively over 32

1Typically, the number of images per subject is equal to 200. subjects on a common data set by comparison with manual



segmentations, and yielded average Dice scorés76fand With the above parametrization, we reformulate (1) as the
0.84, respectively, for endocardial and epicardial segmerellowing constrained optimization problem [9]:
tations, a competitive results in comparison with current Problem: Given two image%; and 7}, defined over),

methods. find the function pair{u(¢),~(¢)}, that optimizes the cost
in (1), subject to:
Il. METHODS
| - [ =10l (82)
We use a points correspondence between the first ifiage Q
andk*" imageT}. defined ovef2 C R? to obtain a sequence 7h > (&) > 7, ce cQ (8b)
of p_0|r_1ts _over_t|r.nel. It_can be formulated as the optimizatiofere g < 7, ensuring thate, -, is a diffeomorphism, and
of similarity/dissimilarity measure [9]. Q' is a sub-region of image domain.
¢ = argopt Ey(Ty, Tk, $(£)) (1) Constraints (8a) and (8b) ensures the areas of the domain
¢ and co-domain are equal after transformation and enforces

for each pixel locatiort € Q, whereg : Q — Q is a trans- the incompressibility constraint in sub-regiorf)’, respec-
formation function, andE,(-) a measure of similarity. As tively. Note that a diffeomorphism corresponds to a positiv
this problem may not have a unique solution, we introduce @nsformation Jacobian, which is enforced explicitly tha
deformation field using a Jacobian transformatioand curl monitor function [11].

of end velocity fieldy, wherey : @ — R and~: Q@ — R The above problem can be solved bstap-then-correct
1) Moving Mesh GenerationLet 1(¢) be a continuous OPtimization strategy. We refer the reader to [9] for deriva
monitor function constrained by tion and numerical implementation details. We compute a
sequence of corresponding points on endocardial as well
/ =19, (2) as epicardial borders in all the frames using transformatio
function ¢, given the segmentation on the first frame.
The purpose of this step is to find a transformation) —
Q,00 — 99, so that I11. EXPERIMENT
Js(&) = (&), 3) The proposed method was evaluated over the Training

nd Testl sets provided by the RV segmentation chalfenge

ICCAI 2012. Each data set consists of short-axis MRI
volumes of 16 subjects. The data sets were acquired on
1.5T MR scanners (Symphony Tim, Siemens Medical Sys-
div p(&) = u(¢) — 1 (4) tems, Erlangen, Germany) with steady-state free pregessio
acquisition mode. More details about the data can be found
at the RV segmentation challenge website. The following
parameter values were used for all cases: = 4 and
7; = 0.25. Ground truth manual segmentations were provided
only for the Training set. In order to assess the performance
of the proposed algorithm on the Test1 Set, we submitted the
automatic contours to the RVSC organizers, who in return,

whereJ,, denotes the transformation Jacobian. The followin
computations yield a transformati@nwhich verifies (3).
Step 1:Compute a vector fielg(¢) which verifies

Step 2:Build a velocity vector field fromp(¢):
_ p(&)
) = - e

wheret is an artificially introduced (algorithmic) time.
Step 3:Finally, ¢ is obtained by solving the following ODE:

t€[0,1], (5)

d , t . N
#)E; ) — (&, 1), te[0,1],4(¢,t =0) = ¢, (6) provided us with the performance measures.
and settingy equal toy) evaluated at = 1: ¢(£) = (¢, =  A. Statistical performance evaluation
1).

. . Two criteria were used to evaluate the similarities between
We add an addmo_nal constraint on the curlige) to (4) the manual segmentations and the automatic segmentations:
and solve the ensuing div-curl system under the Dirichlet 1) The DM: We computed the DM, a common measure
boundary condition to obtain a unique solution, as the abm{ﬁ similarity b'etween manual and au’tomatic segmentation
problem may have multiple solutions, i.e., The DM is given by '
{ div p(&) = p(€) — 1 (7a) oV
curl p(&) = y(€) (7b) DM (Va, Vin) = 3=~ ()

with null boundary conditiop(¢) = 0V¢ € 992, wherey(§)  whereV, , V,,, andV,,, are the volumes of the automatically
IS a continuous funcuo_n ovell. Hence, the transformation segmented region, the corresponding manually delineated
can be fully parametrized by, (£) and (£). We ensure region, and the intersection between them, respectiveite N

the uniqueness of the solution using the Dirichlet boundamhat DM is always between 0 and 1, where 1 means a perfect
condition [10]. The Dirichlet boundary conditions may caus match.

the motion errors to be high at the image boundaries and,
therefore, we pad both images by zeroes. 2http:/www.litislab.eu/rvsc/


http://www.litislab.eu/rvsc/

2) The Hausdorff distance (HD)We computed the HD TABLE |
[12], a symmetric measure of distance between both auto- M
! . EAN AND STANDARD DEVIATION OF DICE METRIC (DM) AND

matic and manual contours. Let us denote automatic ar]_g

. . AUSDORFF DISTANCE(H D) BETWEEN THE PROPOSED SEGMENTATION
manual contours by, andC,,,, respectively. For each point
p’, on C,, we compute the distances to all the poipis on
Cy,. The HD is given by

AND MANUAL DELINEATION AT THE END -SYSTOLE

Hausdorff
HD(C,,Cy) = max(max(min(d(p’,, p?, ))), Dice metric  distance (mm)
Ll . Training Set
max(min(d(pg, pr))))  (10) Endocardium 0.8168 +0.15  7.07 + 4.03
. . . . . Epicardium  0.8627 +£0.10  7.534+3.73
whered(-) is the Euclidean distance. The HD is computed in TesthSet |u

mm with spatial resolution obtained from the PixelSpacing
in the DICOM header.

Table | reports the DM and HD values for Training and
Test1 sets. The proposed method yielded average Dice scores
of 0.79 and0.84, respectively, for endocardial and epicardial
segmentations. The average DM values for endocardium and TABLE Il
epicardium for each subject in the Training and Test1 sets ar  CORRELATION COEFFICIENTIZ AND COEFFICIENTS OF LINEAR
depicted in Flg 3(a) and (b) The figure demonstrates thaﬁEGRESSION FIT(y = ax + b) BETWEEN THE PROPOSED METHOD AND
the proposed method yielded high conformance with manual GROUND TRUTH
segmentations in most cases.

Endocardium 0.7676 +0.16  9.64 +=4.15
Epicardium  0.8220+0.10  9.99 + 3.85

Measurement Linear regression coefficients

We also evaluated the performance of the proposed method——
for estimating the clinical measurements, end-systolie vo ~Training Set

ume (ESV) and the EF. We did not report end-diastolic =~ ESV R =0.9929,a = 1.0102,b = 3.7846
volume since it corresponds to the manual segmentation. EF R =0.9611,a = 0.9229,b = 0.0047
Table Il reports the correlation coefficieftand coefficients ~ Testl Set

of linear regression fity( = ax + b) for ESV and EF ESV R =0.9834,a = 0.9602,b = 19.1602
estimation. The proposed method yielded high correlation ~ EF R =0.9263,a = 0.7937,b = 0.0306

between manual and automatic clinical measurements. Linea

regression plots of ESV and EF, depicted in Fig. 2(a) and (b)

with the identity line, illustrate this correlation. Theerage

and standard deviation errors between automatic and mané&a@l 1. Representative example of segmented endocardiaér(yp and

EF are0.0858 - 0.06 and 0.1874 + 0.13 for Training and epicardial (yellow) borders of the RV over a complete cardigcle.
: ) ’ ’ manual frame 2 frame 3 frame 4 frame 5

Testl sets, respectively.

B. Visual Inspectlon frame 6 frame 7 frame 8 frame 9 frame 10

In Fig. 1, we give representative examples of segmentg
endocardial and epicardial borders of the RV over a co
plete cardiac cycle. These examples show that the propog
method accurately included the papillary muscles insige th
target cavity, although these have similar intensity peafil
the RV myocardium.

frame 11 frame 12 frame 13 frame 14 frame 15

The proposed method allows RV volumetric analysis ove
the complete cardiac cycle. Fig 4 shows the volume of the R
cavity plotted against time step, where we applied Simpson
rule in computing the volumes based on the segmented RyM™Me 16
areas and slice spacing.

frame 17 frame 18 frame 19 frame 20

Our MATLAB parallel implementation of the proposed
algorithm running on two quad-core 2.4 GHz Intel Xeo
processors took.85 + 2.10 seconds to process a sequenct
of 19 images.




Fig. 2.

Comparisons of manual and automatic segmentatiors 16

subjects from the Training set. (a) Automatic versus maruma-systolic
volumes. The proposed method obtained a high correlati@fficent of

R = 0.9929 (b) Automatic versus manual ejection fractions. The prepos

method obtained a correlation coefficient Bf= 0.9611.

Manual

Fig. 3. Average Dice scores for endocardium and epicardiameéch
subject in the Training and Testl sets at end-systole.
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(b) Epicardium

A representative example of the RV endocardial ve@urarve

computed using the proposed approach. We applied Simpsalesin
computing the volumes using segmented RV areas and slicengpa
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IV. CONCLUSION

This study presents an approach to segment the RV from
short-axis cine MR sequences. The proposed approach is
based on point correspondence between the sequence of
images computed using a recent nonlinear registration algo
rithm. The proposed method segments both endocardial and
epicardial borders of the RV, and does not require a training
data. The proposed method is evaluated quantitatively over
32 subject on a common data set by comparison with manual
segmentations, and yielded average Dice scorés76fand
0.84, respectively, for endocardial and epicardial segmenta-
tions, a competitive results in comparison with relatecgntc
methods.
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