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Abstract

Smart indoor spaces include a network of interconnected sensors, predictive mod-

els, and actuators to sense occupants’ activities and act to improve living. These

ubiquitous systems are increasingly popular due to their potential to improve energy

efficiency, comfort, and safety in buildings. Typically, the sensors collect data on

the environment, while the predictive models use this data to predict the environ-

ment’s activities and state. The actuators then act on the environment to change the

environment’s state to a desired one.

The design of smart indoor spaces is a challenging task that requires a lot of effort

and time. One critical aspect of the design process is finding a suitable sensor config-

uration, as different applications require different sensor configuration deployments.

The quality of the sensor configuration is critical for the system’s overall effectiveness,

as inaccurate or incomplete sensor data can lead to poor performance.

To address these challenges, designers of such systems iteratively deploy and mod-

ify different sensor configurations to find the one that meets their needs [147]. This

process is complex and time-consuming. Alternatively, simulation methodologies have

been proposed to facilitate the design process because they offer fast, reproducible,

and easy prototyping. Simulation allows designers to test and evaluate different

sensor configurations in a virtual environment, reducing the need for expensive and

time-consuming physical deployments. However, current simulation approaches still

require significant effort and expertise to optimize the sensor configuration accurately.

This thesis proposes a simulation-driven sensor configuration evaluation frame-

work that can optimize the sensor configuration effectively for various applications.
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Such a framework evaluates and optimizes different sensor configurations efficiently,

leading to the development of more effective smart indoor spaces. The framework is

evaluated in terms of 1) the fidelity of its simulation methodologies, 2) the quality of

the sensor configurations it proposes, and 3) the framework’s scalability considering

the sensor numbers and types.
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Chapter 1

Introduction

The term Internet of Things (IoT) was first coined in 1999 by Kevin Ashton at the

Massachusetts Institute of Technology (MIT) in the context of using Radio Frequency

IDs (RFID) to track products in a supply chain [10]. This project sparked the idea

of enhancing objects or “things” by allowing them to wirelessly connect and share

their locations and descriptive information. The concept of IoT has been used as

an umbrella term for several systems, both in academia and industry, such as smart

homes, i.e. Smart Indoor Spaces (SIS), transportation, and power grids [59].

In particular, SIS system uses a network of connected devices (sensors and ac-

tuators) for indoor applications by integrating the physical world into computer-

connected systems. Research on SIS applications has received increased attention for

applications such as Ambient Assisted Living (AAL) [86], improving the efficiency

and energy consumption of buildings [118], and security-related applications [77].

These applications require deploying sensors configured to monitor the indoor space:

for example, to monitor occupants’ presence, movements, and activities. In most

applications, software services use real-time low-level sensor data to infer high-level

information about the occupant’s activities or the state of the indoor space. Actu-

ators are present in some applications, which modify the state of the indoor space

using the sensed information.

The devices and occupants’ interaction in an indoor space create contextual in-
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formation. In this context, the term contextual information means the perceivable

information from the environment that services infer by utilizing sensor data. The

type of contextual information directly depends on the kind of SIS applications, vary-

ing from occupants’ traces, i.e. location [94] and/or activity [139], and spatial traces

such as air circulation in rooms [126].

Despite the extensive research on SIS applications, there are two critical limitations

to the ongoing research:

1. It is strongly data-driven;

2. It involves determining a proper sensor and/or actuator deployment configura-

tion that fits the service’s intentions.

In such systems, specific datasets are collected consisting of sensor data and their

corresponding contextual information (mainly via manual annotations). The data

collected are specific to the sensor capabilities and are influenced by the occupants’

activities. For example, data-driven learning approaches are used for occupants’ be-

haviour modelling in [119]. The acquisition of SIS datasets is subject to constraints

such as availability, flexibility and quality. An alternative is to simulate the environ-

ment in which the SIS applications operate to potentially mitigate the layout and

configuration problems, such as in [134, 103]. As pointed out in [103], simulation

tools provide the extensibility, flexibility, and scalability needed to address various

contexts and large-scale applications. Simulation methodologies offer inexpensive,

repeatable, and rapid prototyping of SIS applications. Therefore, designers of such

systems can quickly perform several experiments and collect sample datasets before

the actual deployment. As shown by Bruneau and Consel [23], it takes only one

hour, on average, for users with basic software development skills to simulate a sim-

ple SIS application using their methodology. In contrast, a similar task would take

considerably more time and effort in real-world settings. In addition, McGlinn et

al. [90] found that 67% of the SIS designers could complete their tasks by using their
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simulation’s visualization of contextual events. The percentage drops to 47% if the

information is unavailable to the designers. Researchers are granted complete control

over the SIS system in simulation. They can modify the elements of the modelled

space, e.g. walls, doors, windows, furnishings, etc., and simulate the configuration

of sensors/actuators at any number, type and location. One of the key advantages

of simulation is that it allows designers to explore various scenarios of the occupants’

movement, disposition, and actions that will enable them to optimize suitable sensor

and/or actuator configurations to detect specific conditions necessary for the intended

applications. However, one of the disadvantages of using a simulator is that it may

not fully capture the complex and unpredictable nature of real-world environments,

potentially leading to inaccurate results.

The sensor deployment configuration (type, number, and location of sensors) is a

crucial element of design decisions. The configuration directly affects the quality of the

services [114, 154] where a well-designed sensor configuration can result in detecting

contextual information accurately at the lowest possible cost. However, finding the

best sensor configuration requires several trials and errors, which are costly and time-

consuming. The simulators offer reproducibility of specific situations for evaluation

purposes which are expensive to obtain in real-world settings because simulators can

be executed several times from a starting state and replicate the desired situation.

Based on the reproducibility property of SIS simulation methodologies, Zhan and

Haddadi [160] showed that a combination of a set of metrics for sensor configuration

evaluation and a SIS simulation tool provides an inexpensive and rapid prototyping

framework for evaluating different sensor configuration deployments. Furthermore,

several studies such as [139, 44, 58] have proposed to automate sensor configuration

design using a minimum (or fixed) number of sensors. In [139, 147], an automatic

sensor configuration design is faster, easier, and significantly more accurate than

manual configurations.
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1.1 Thesis Statement

This thesis introduces a simulation-driven systematic sensor configuration framework

that incorporates the quality of inferring contextual information as the metric for

evaluating various sensor configurations. This thesis aims at introducing principled

practices towards this goal. To this end, we first explain the critical aspects of the

problem.

1.1.1 Smart Indoor Space Simulation Methodology

Generally, SIS simulation methodologies are required to realistically model indoor

spaces, deployed sensors and/or actuators, as well as occupants. In principle, sim-

ulators should satisfy two properties: generality and high-fidelity. Generality refers

to the level of abstraction that the simulator adopts in representing the simulated

scenarios. High-fidelity is defined as how realistic and faithful the system can simu-

late the indoor space, the elements it contains, and the activities that take place in

it. Simulators with these two properties enable the development of a broad range of

sensor-based applications to efficiently experiment with different sensor-deployment

configurations and evaluate how effective each configuration is in collecting the raw

data the application needs to meet its quality requirements.

Traditionally, modelling indoor spaces require that a designer use a 3D/2D Computer-

Aided Design (CAD) editor. The model’s accuracy determines how well the simulator

can accurately represent the real environment. The simulator software does not neces-

sarily offer capabilities to model any intended indoor space. Moreover, this approach

makes the simulator less realistic because it may not be able to take into account

the complete geometry specifications accurately. Instead, specific automated meth-

ods, such as a standard data model called International Foundation Class (IFC) for

Building Information Modelling (BIM) [13], can be used to generate digital twins of

arbitrary indoor spaces to make the process less burdensome and more generalized.
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Moreover, modelling occupants’ activities are based on virtual characters interact-

ing with objects based on some behavioural policies, like motivation-driven [88] and

hierarchy-based [117, 69]. It has been shown that the hierarchy-based behaviour

modelling can be adjusted to fit specific contexts, e.g. performing activities of daily

living ADLs or office routines. Often, agent models are validated by comparing the

activity distributions in simulated versus real data [88]. However, a more promising

approach was proposed by Renoux et al. [117] in which they temporally compared

the synthetic timeline of activities versus the real world. In this thesis, we argue

that temporal evaluation of occupants’ behaviour modelling is necessary for SIS ap-

plications as it is required to anticipate the time and order of activities in several

applications, such as energy-saving policies of a building. Sensor data must also

be validated to their real-world counterpart using time-series analysis. In [69], the

authors compared synthetic motion sensor data with their real-world counterparts.

They showed that their simulation methodology is accurate if synthetic and ground

truth datasets are aggregated in one-hour window sizes. The fidelity of a simulation

methodology and dataset aggregation granularity, in terms of occupants and sensor

modelling, decides the range of the applications the methodology supports. In this

thesis, the primary focus of the SIS applications is to develop a system that can be

used for ageing-in-place applications. The goal is to monitor if elderly individuals

can perform regular ADLs while living alone or detect falls, confusion, and other

potentially dangerous conditions. Therefore, the aggregation granularity should be

low-level enough to guarantee that synthetic datasets contain corresponding valuable

information for further analysis.

1.1.2 Sensor Configuration Evaluation Framework

A substantial body of literature focuses on methodologies to find high-quality con-

figurations for sensor deployment. The evaluation metrics can be divided into two

main categories: 1) Metrics that consider maximizing the coverage areas of indoor
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spaces by sensors, and 2) Metrics that consider the quality of contextual information

detection using the sensors’ data.

Several approaches have been proposed to maximize the sensors’ coverage area [43,

44, 57]. However, one of the primary limitations of these approaches is that their

evaluation metrics do not account for contextual information. For instance, covering

the corners of a room is less critical than covering areas toward its centre, as most

of the occupants’ traces (location and activities) are unlikely to be present in the

corners. Moreover, these approaches are unsuitable for sensors that do not cover a

specific area but are sensitive to particular events as part of contextual information,

such as an electricity sensor that detects power consumption.

On the other hand, various studies propose targeted coverage approaches, i.e. pri-

oritizing some areas of interest and events such as [16, 76, 147, 139]. Targeted cover-

age approaches leverage data quality evaluation in detecting contextual information,

potentially leading to better sensor configurations than area coverage approaches.

These studies translate contextual information as specific valuable observations. How-

ever, these approaches have two drawbacks. First, most approaches translate contex-

tual information as occupants’ location, meaning that all the target points have the

same level of importance, which dismisses the differentiation between hazardous and

safe activities such as bathing and sleeping in an aged-care monitoring application,

respectively. Secondly, these approaches require the collection of a corresponding

dataset, which is a challenging, time-consuming, and expensive process. Using ex-

isting datasets is also limited by applicability, availability and flexibility, as different

applications require various datasets.

1.2 Key Contributions

The main goal of this thesis consists of building a sensor configuration optimization

framework for accurate activity recognition in indoor environments using simulation.

The proposed techniques are designed to make SIS application designs faster, safer,
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and more efficient. The research questions that we address in this thesis are as follows:

R1: The capability to infer some contextual information from raw sensor data. It is

essential to determine the kinds of contextual information that can be inferred

from raw sensor data.

R2: The ability to evaluate different sensor configuration deployments by assessing

the quality of detecting contextual information.

R3: A SIS simulation methodology that can simulate various applications and pro-

duce high-fidelity synthetic datasets.

R4: A novel simulation-driven sensor configuration optimization component for SIS

applications, considering the quality of detecting contextual information as the

objective function.

In summary, the key contributions of the present work are:

• Development of a high-fidelity SIS simulation methodology: In the

present work, we present a SIMulator for Smart Indoor Spaces (SIMsis ), that

makes the following important contributions to the state-of-the-art:

– We propose accurate modelling of the indoor space, relying on BIM in the

IFC format, the de-facto representation standard of building information

models. IFC enables the accurate specification of the space geometry and

the furnishings and objects in it. Our simulation methodology augments

the IFC building model with specifications of the affordances of the objects

in the space, so that virtual occupants, given a set of objectives, move

through the space and interact with the objects to accomplish their goals.

– We develop a sensor modeling component that realistically models popular

off-the-shelf sensors in SIS applications.

– We investigate the fidelity of the simulation methodology in terms of oc-

cupants’ behavior and sensor readings by developing a digital twin of a

real-world SIS application.
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• Sensor Configuration for Accurate Activity Recognition in SIS ap-

plications using Bayesian Optimization and Building Simulation: We

present an automatic sensor configuration component based on Bayesian opti-

mization and building simulation for efficient identification of sensor configura-

tion that better supports accurate activity recognition in an aged-care facility.

The contributions of this component are:

– We cast the problem of configuring sensors in an indoor space as a Bayesian

optimization problem.

– We propose a simulation-based assessment and optimization framework

that allows for using synthetic activities and movement trajectories, in-

stead of real-world traces that are difficult to collect

– We demonstrate the efficacy of the proposed methodology in finding differ-

ent sensor configurations in the digital twins of two real-world apartment

buildings.

1.3 Thesis Outlines

This dissertation takes the form of a paper-based thesis, wherein each chapter rep-

resents independent research paper(s). This format allows for a concise presentation

of various aspects of our research topic. Each chapter is self-contained, encompass-

ing an introduction, methodology, results, and conclusion, contributing to an overall

comprehensive exploration of our research findings.

This dissertation is organized into six chapters. Following the introduction Chap-

ter 1, Chapter 2 describes two proof of concepts that examine building data-driven

models for contextual information inference using raw sensor data. Then, the chap-

ter investigates using contextual information to design high-level sensor configuration

evaluation metrics. Chapter 3 presents a unified taxonomy for the definition and

development of SIS simulation methodologies, that can cluster related work found
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in the literature into meaningful groups. It followed by identifying requirements for

developing a simulation that supports a wide range of SIS applications. Chapter 4

presents a SIS simulation methodology and examines its fidelity in a case study. Chap-

ter 5 proposes a simulation-driven sensor configuration component in SIS applications

using Bayesian Optimization (BO). Then, we comprehensively evaluate the compo-

nent’s scalability and modularity in this chapter. Finally, Chapter 6 summarizes the

contributions and discusses potential future research avenues.
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Chapter 2

Using Low-level Sensor Data for
High-level Sensor Configuration
Evaluation

There have been several examples of using SIS applications in academia and industry

over the past decade. In most applications, a predictive model is designed to infer

the desired contextual information from raw sensor data. For example, there is a rich

and growing corpus of work on estimating the occupancy schedules of different rooms

in a building. However, some outsized challenges inhibit the models’ safe, reliable,

and generalized deployment in real-world environments. This chapter presents two

proof of concepts. First, we study the application of two data-driven models for SIS

occupancy estimation, as contextual information, using sensor readings. This study

shows great promise for applications in both residential and commercial buildings that

data-driven models can predict certain contextual information using dedicated and

common occupancy-indicative sensors. Secondly, we study the effectiveness of using

indoor occupants localization as an inferred contextual information to design high-

level meaningful metrics for evaluating different sensor configuration deployments.

This chapter focuses on R1 and R2 research questions, specified in Section 1.2,

respectively:

• R1: The capability to infer some contextual information from raw sensor data.

It is essential to determine the kinds of contextual information that can be
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inferred from raw sensor data

• R2: The ability to evaluate different sensor configuration deployments by as-

sessing the quality of detecting contextual information.

2.1 Data-driven Models for SIS Occupancy Esti-

mation

2.1.1 Introduction and Background

Building occupancy is one of the main factors determining its energy consumption

[35]. There are different types of spaces in a building, each with a unique occupancy

trace, i.e.location and activity. Despite the fact that huge variations in occupancy

traces over space and time, the whole building is often treated as a uniform environ-

ment controlled with a fixed ventilation rate and static schedules for air conditioning

and lighting, thereby wasting much energy in conditioning empty or partially oc-

cupied spaces. However, fine-grained occupancy trace information is unavailable in

buildings, and camera-based occupancy monitoring is intrusive and costly at scale.

This has given rise to several techniques that are less intrusive, employing other modes

of sensing to estimate the occupancy state (i.e. empty or occupied) of different spaces

within the building [52, 5, 141].

Despite recent advances in detecting human presence in buildings, existing tech-

niques offer limited predictive power when discerning the number of occupants. This

is an inherently difficult problem owing to the highly uncertain and complex nature

of occupancy trace dynamics. To address this, some researchers have utilized physics-

based models of the indoor environment, such as the Resistance-Capacitance (RC)

model [65, 121], to infer the occupancy schedules of a building from experimental

or simulated data. The advantage of such models is their high granularity of tem-

perature modelling, but they are high-dimensional and must be customized for each

room. In addition, it is difficult to distinguish the effect of occupancy trace from
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other latent factors rendering them computationally expensive. Data-driven models

can also be developed to discern the number of occupants of the many rooms in a

building [68, 5, 7]. These models are easier to build and can substitute complex

physics-based models with an insignificant loss of prediction accuracy [163]. Most

related work focuses on the application of machine learning and time-series analysis

techniques to detect human presence and determining the number of occupants in

a single room or a multistory building [42, 68, 107, 28, 163, 113]. Our approach is

similar to these data-driven modelling techniques with two main differences. First,

we adopt particle filters and dynamic neural networks, which are powerful techniques

for estimating hidden states in nonlinear dynamical systems. Second, we compare

the accuracy of these methods on two datasets with common and dedicated sensors.

To our knowledge, these techniques have not been compared in previous work with

respect to the accuracy of predicting the number of occupants.

This section explores the application of two advanced data-driven occupancy mod-

elling techniques which fuse data from multiple occupancy-indicative sensors, includ-

ing dedicated occupancy monitoring sensors and sensors that are commonly available

in commercial buildings (e.g. the HVAC sensors). We postulate that over a broad

spectrum of sensor modalities, a person in a building will always leave a trace, de-

tectable in installed sensors readings through sufficient analysis. We evaluate the

accuracy of these techniques on a small number of rooms in two test buildings and

show that these models are capable of predicting the number of occupants in every

room with a relatively high accuracy. This chapter presents our preliminary results,

which support our claims that data-driven models using raw sensor data are capable

of occupancy trace recognition.
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2.1.2 Methodology

Testbed

Our testbed is comprised of two buildings1 equipped with different types of occupancy-

indicative2 sensors as shown in Table 2.1. Building 1 [72] is a residential building

equipped with dedicated sensors including a Volatile Organic Compounds (VOC)

sensor measuring indoor air quality, a Bluetooth Low Energy (BLE) receiver report-

ing the number of BLE beacons in its proximity, a calendar feed indicating scheduled

occupancy events, and a flag for distinguishing between weekdays and weekends.

The BLE beacons are attached to key fobs carried by the occupants. The sensor

measurements and ground truth occupancy data are available for seven weeks and

the maximum occupant count recorded during this period is seven. Building 2 is a

large commercial building with a Building Management System (BMS) that archives

measurements of damper position and CO2 sensors which are integral parts of the

Variable Air Volume (VAV) system that exists in each zone. These sensors are com-

monly available in a commercial building with a centralized HVAC system. We have

access to 16 days worth of VAV data and ground truth occupancy data from four

different rooms in this building. The maximum numbers of occupants recorded in

these rooms during this time period are 29, 35, 39, and 67, respectively.

Particle Filter

Particle Filter (PF) is a powerful and widely used method for solving optimal state

estimation problems in non-linear non-Gaussian scenarios [140]. The PF algorithm

is a special case of the Sequential Monte Carlo (SMC) algorithm. Sequential data

analysis methods have been used in the past to solve the binary occupancy detection

problem [107, 28]. Our filtering problem of interest is how to incorporate measure-

ments of different sensors to estimate the number of occupants in each room.

1Both data sets have been previously used for occupancy detection [46, 121].
2A sensor is deemed occupancy-indicative in a given space if there is a correlation between its

readings and the occupancy state of that space.
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Table 2.1: Our testbed for the evaluation of our contextual information inference
prototype

Datasets Sensors

Building 1 VOC: Volatile organic compounds concentration

BLE: No. BLE beacons in the range of the receiver

CAL: Calendar with scheduled events

DAY: Flag indicating a weekday or a weekend

Building 2 CO2: Carbon-dioxide concentration

Damper POS: VAV Damper position

In general, two models are required to estimate the hidden state using a PF: a

model describing the evolution of the state with time (the system model) and a model

relating the noisy measurements to the hidden state (the measurement model). The

PF represents the posterior occupancy state of a room by an S number of random

state samples or particles (x
[s]
t with 1 ≤ s ≤ S) drawn from the system model,

and assigns weights to these samples according to the measurement model which

represents the reliability of each sensor. Assuming a Markov process of order one, the

recursive Bayesian estimation can be written as:

p(X0:t|Z1:t) =p(Xt|Zt)p(Xt|Xt−1)p(X0:t−1|Z1:t−1), (2.1)

Bayes
= η p(Zt|Xt)p(Xt|Xt−1)p(X0:t−1|Z1:t−1), (2.2)

where Xt is a categorical random variable modeling the hidden state, i.e., the num-

ber of occupants in the room at time t, and Zt = [Z1
t , · · · , ZM

t ] is an M -dimensional

random variable modelling measurements ofM different sensors at time t. If the max-

imum number of occupants in the room is N , then Xt takes values from 0, 1, ..., N ,

and p(Xt = k) denotes the probability of having 0 ≤ k ≤ N occupants at time t.

Note that Zt only depends on Xt; hence, given Xt, Zt is independent of Xt′ , Zt′ with

t′ ̸= t.
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Learning system and measurement models: Our goal is to learn the system

model, denoted p(Xt|Xt−1, Zt) = p(Xt|Xt−1), and the measurement model, denoted

p(Zt|Xt), from the training data which is 50% of our dataset. Once we have these

two models, we can estimate the probability of having a certain number of occupants

at each time given the measurements of a set of sensors.

The system model encodes the probability of going from Xt to Xt+1. To build the

system model, we assume transition probabilities are time-dependent. To estimate

the transition probability at a given time, we take into account all state transitions

that happened in an interval of length τ = 10 minutes (i.e. τ is the unit of time).

For the measurement model, we assume that for every sensor i, p(Zi
t |Xt = k) can

be approximated by a Gaussian distribution with a conditional mean and variance

with respect to the value of Xt which can be estimated from the training data. We

can write

p(Zi
t |Xt = k) ∼ G( ˆ︁E(Zi

t |Xt = k), ˆ︁V(Zi
t |Xt = k) ), (2.3)

p(Zt|Xt = k) =
M∏︂
i=1

p(Zi
t |Xt = k), (2.4)

where ˆ︁E(Zi
t |Xt = x) and ˆ︁V(Zi

t |Xt = x) are the estimated conditional mean and

variance of the ith sensor, respectively.

Algorithm 1 describes the PF algorithm. Note that the more accurately a particle

estimates the state, the higher weight (importance) it would get.

Dynamic Neural Networks

Dynamic neural networks can be also used for input-output modeling of nonlinear

dynamical systems [39]. We adopt nonlinear autoregressive network with exogenous

inputs (NARX) which is a recurrent dynamic network with feedback connections

enclosing several layers of the network. The network is similar to a feedforward

network, but in addition to the regular input Zt it is fed with d previous output

variables, i.e., {Xt−1, Xt−2, · · · , Xt−d}, where d is defined in a way that the network
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Algorithm 1 The Particle Filter Algorithm

Inputs: S: Number of particles, T : Length of the data set,
Z1:T : Measurements of the sensor(s) up to time T
Output: X1:T : Set of particles up to time T

1: Xt = {} ∀t ∈ {1, · · · , T}
2: for t = 1 : T do
3: X̄ = {}
4: for s = 1 : S do
5: Sample x

[s]
t ∼ p(Xt|Xt−1 = x

[s]
t−1)

6: w
[s]
t = p(Zt|Xt = x

[s]
t )

7: X̄ = X̄ + {x[s]
t , w

[s]
t }

8: end for
9: for s = 1 : S do
10: Draw s with probability ∝ w

[s]
t

11: Add x
[s]
t to Xt

12: end for
13: end for
14: return c∗

Zt

Multilayer
perceptron
with one

hidden layer

Xt

Xt−1:t−d

Figure 2.1: Time Series Neural Network block diagram.

receives the last 10-minute outputs for prediction. Figure 2.1 shows the network

architecture. The network is trained using the Levenberg-Marquardt algorithm [95]

utilizing MATLAB Neural Network Toolbox [89]. We use 50%, 30% and 20% of the

data for training, validation, and testing, respectively.

2.1.3 Results

We run the proposed methods on our testbed to estimate the number of occupants

in each room. Table 2.2 shows the performance of both PF (with 1000 particles)

and NARX methods on the two datasets measured by Root Mean Squared Error
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Table 2.2: The RMSE of PF and NARX (Ri: the ith room in Building 2)

Method Building 1
Building 2

R1 R2 R3 R4

PF 0.4 1.5 0.8 1.4 2.9

NARX 0.3 0.4 0.4 0.5 0.8

Maximum no. occupants 7 29 35 39 67

Average no. occupants 0.4 2.7 2.5 3.6 7.4

Peak-to-avg. occ. ratio 0.06 0.09 0.07 0.09 0.11

Figure 2.2: Estimated occupancy count using PF in Building 1 (RMSE = 0.4)

(RMSE). It can be readily seen that the NARX method outperforms the PF method

in all rooms. Nevertheless, the PF method also yields a relatively accurate prediction

of the number of occupants when compared to the maximum occupancy level of each

room. Interestingly, the prediction errors of both methods are higher in those rooms

that the peak-to-average occupancy ratio3 is lower, suggesting that the difference in

the prediction errors cannot be explained by the maximum or the average number of

occupants alone.

Figures 2.2, 2.3, 2.4, 2.5 show the PF and NARX predictions and the ground truth

occupancy data in Building 1 and Building 2 (Room 4). As depicted in Figure 2.2, the

prediction error of the PF algorithm is higher when there is a short occupancy event,

3The peak-to-average occupancy ratio of a room is defined as the maximum number of occupants
divided by the average number of occupants in that room.
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Figure 2.3: Estimated occupancy count using NARX in Building 1 (RMSE = 0.3)

e.g., on August 24th, the number of occupants decreased to one, and then quickly

returned to two. The algorithm missed this rapid change in occupancy. This can also

be seen in Figure 2.4. In addition, the predicted occupancy count decreases gradually

when the room becomes unoccupied. These two observations can be attributed to the

fact that the CO2 concentration level builds up and drops slowly. Furthermore, the

PF algorithm predicts the occupancy slightly ahead of the actual incident in Building

1. We attribute this to the fact that we take scheduled events (from the calendar)

into account when we train the models. Thus, when there is a scheduled event, the

probability of seeing a change in the occupancy state increases.

It should be noted that although NARX outperforms PF in both datasets, its

predicted occupancy starts to fluctuate when number of occupants increases to seven

in Building 1; this is evident in Figure 2.3. We further study how the room occupancy

level affects the prediction accuracy of our methods. In particular, running the PF

method with 1000 particles on Room 1 of Building 2, gives an RMSE of 0.72 when

there are only 23 occupants in that room. Given that the maximum occupancy

of Room 1 is 29, we can conclude that the PF algorithm makes more erroneous

predictions as the number of occupants increases.

The performance of the PF method depends on the number of particles that it
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Figure 2.4: Estimated occupancy count using PF in Building 2, Room 4 (RMSE =
2.9)

Figure 2.5: Estimated occupancy count using NARX in Building 2, Room 4 (RMSE
= 0.8)

uses to represent the posterior. To study the sensitivity of the results to the number

of particles, we run the PF algorithm with different numbers of particles on Building

2 (Room 1 and Room 4) where the algorithm performed relatively poorly. Table 2.3

shows the average RMSE over 10 runs for each case4. As expected, increasing the

number of particles improves the prediction accuracy of the PF method, but this

comes at the cost of increasing its computation time.

Discussion

Data-driven occupancy models show promising results in both residential and com-

mercial buildings equipped with dedicated and common occupancy-indicative sensors.

4The standard deviation is very small (∼ 50s).
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Table 2.3: The RMSE of PF for different numbers of particles.

No. Particles
Building 2 Building 2 Avg. Computation

Room 1 Room 4 Time (s)

500 4.7 4.6 2710.1

1000 2.7 3.6 5751.0

2000 2.4 3.2 11456.0

3500 1.7 2.8 21288.3

5000 1.7 2.7 33398.0

7000 1.4 2.4 58759.4

Our findings confirm that black-box data-driven models can be used to predict con-

textual information accurately. As shown in Table 2.2, both PF and NARX models

exhibit better performance on Building 1. This can be partly attributed to the ded-

icated occupancy-indicative sensors that were installed in this building; however, it

can also be due to the fact that we had fewer occupants in this building. We cannot

draw a conclusion without analyzing data from a building that has a higher typical

occupancy level and is equipped with dedicated sensors. In any case, both techniques

also exhibit acceptable performance on Building 2, which has a higher occupancy

level and only includes commonly available sensors.

This section shows that occupants leave distinct enough patterns in sensor reading

space, so that data-driven models can detect specific contextual information accu-

rately.

2.2 Using Contextual Information Inference for Eval-

uating Different Sensor Configurations

2.2.1 Introduction and Background

This section, while not dismissing the use of analytical techniques such as optimiza-

tion, focuses on two categories of tools that can be used for pre-deployment sensor

configuration evaluation. Simulators are, by far, the most popular approach for SIS
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application deployment evaluation. There is a wide range of simulators such as [15,

112, 135] mainly focusing on low–level aspects of the underlying Wireless Sensor

Network (WSN) network, e.g. message passing, protocols. However, context–aware

simulators, i.e. simulators with contextual information modeling capability, provide

high–level analysis of WSNs, which is desirable for SIS applications, and may incor-

porate several techniques such as machine learning, and domain-specificity, such as

healthcare scenario simulators.

On the other hand, emulators are a combination of hardware implementation and

software simulation in order to mimic a real–world WSN under controlled conditions.

MiNT [38] is an example of emulators, that offers small–size testbeds for faster eval-

uation. Although emulators provide more realistic evaluation techniques, the costs of

developing and evolving WSN configurations in emulators are higher.

Going beyond coverage and/or energy criteria, efforts have been made to introduce

middleware systems with Quality of Context (QoC) support for SIS applications [56]

in order to incorporate high-level evaluation of sensor configurations. Three parame-

ters are mainly involved in QoC [24]: Quality of Information (QoI), Quality of Context

(QoC), and Quality of Information (QoI). For example, Nazário et al. [100] used up-

to-dateness, precision, completeness, and significance variables of sensor readings to

quantify the QoC parameter in order to evaluate an e–health sensor platform, using

a simulator called Siafu. They found that the QoC parameter can assist in detecting

abnormal SIS behaviors related to the mentioned variables.

Less attention has been paid to high–level evaluation of sensor configurations. In

this section, we present a methodology to aid the developer to interpret how QoC

impacts the overall application behavior. The presented integrated methodology takes

advantage of context–aware simulation environments such that, given a floor plan,

it assists in the quick design and development of a SIS application. It considers

the evaluation of alternative deployment configurations by providing a high–level

application analysis module, which focuses on QoI parameters.
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We chose to base our work on extensions to the CASi [33] simulator. CASi is

an easy-to-use and open-source simulator that provides a user interface, i.e.Floor

Plan Editor, for modeling the physical space and the deployment of sensors in it,

and then simulates the occupants’ movements and activities to generate sensor event

traces that can be consumed to detect some contextual information. We have made

two important extensions to the original CASi framework. First, we extended it to

support the automated ingestion of XML files representing the space and deployment

configuration of sensors, instead of requiring a designer to specify them via the CASi

UI. We have further extended CASi so that, in addition to simulating the occupants’

activities, it can also consume an externally provided occupants activities trace and

generate the corresponding sensor events as output.

The output sensor-event streams are then analyzed to detect contextual infor-

mation. The analysis can be modified in order to view results based on application–

specific requirements, but for the rest of this section, we consider occupant localization

applications for indoor spaces as an example of contextual information detection.

The contributions of this section are: 1) We present a streamlined simulation

of a SIS application deployment, based on a model of the space and the deployed

sensors, and simulated and/or input activity traces; 2) We evaluate different sensor

configuration deployments from two high-level perspectives, i.e. context–aware and

overall performance of localizing occupants (as a contextual information).

2.2.2 Methodology

Our methodology integrates and supports four modules (Figure 2.6): 1) Deployment

Configuration Specification, 2) Occupant Activity Simulation, 3) Sensor-Event Ob-

servation and Analysis, and 4) Deployment Configuration and Exploration of the

Configuration Space.
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Figure 2.6: Overall architecture of a prototype for sensor configuration evaluation.

Deployment Configuration Specification

Through the CASi Floor Plan Editor, users can develop a model of the indoor space

where the activity-recognition application will be deployed (Figure 2.7). The space

model defines the floor plan, i.e. rooms, doors, obstacles, and interactive objects such

as beds and chairs. Users can also superimpose on this floor plan a sensor deployment

configuration through the CASi Sensor Editor. The sensor deployment configuration

adds to space model a description of the sensors to be deployed in the space and

feeds their events to the SIS application under examination, e.g. location and type.

Finally, users are able to establish an MQTT broker [97] in order to send sensor

events to another host for further analysis, through the CASi Simulation-Application

Generation. We extended the original CASi framework, with an intermediate layer,

through which the user interface produces a serialized representation of the model

in XML. Models in this format can be input to the CASi Simulation-Application

Generation module to generate a simulation. In this manner, users can easily clone

and modify models to produce a family of simulations, each one with slightly different

sensor deployment configurations.

Occupant Activity Simulation

This module takes as input a simulated activity trace, in the form of a stream of

{time, location, activity} tuples, and converts it to the format expected by the CASi

Simulation Application. The Simulation Application also reads as input the XML
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Figure 2.7: The CASi floor plan editor shows rooms (large polygons), doors (red
dots), obstacles/objects (grey polygons) and their interactive sides (red lines).

file describing the space model and sensor-deployment configuration. The output

of Simulation Application is a stream of sensor events, subsequently passed to the

Observation and Analysis module via the MQTT broker.

Sensor-Event Observation and Analysis

This module represents the activity-recognition systems that our methodology is de-

signed to support by enabling the simulation of their performance in different deploy-

ment scenarios. The underlying assumption is that these subject systems, henceforth

systems-under-test, infer the agents’ activity traces based on the input stream of sen-

sor events, as produced by the simulation module described above. In this section, we

illustrate our methodology using as system-under-test the Smart-Condo™ localization

system described in [94].

Deployment Configuration and Exploration of the Configuration Space

By running the simulation and comparing the inferred activity trace produced by the

system-under-test and against the synthetic ground truth, input to the simulation, our

methodology enables the developers of the system-under-test to evaluate the system

in different sensor-deployment configurations. This module computes two different

indicators, i.e. overall performance, and context-aware performance (described next),
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represented as error metrics and visualized at different levels of granularity. The

visualization is by means of heatmaps, to capture the space-/position-related relative

performance of the specific sensor configuration. The metrics are as follows:

• Overall Error Heatmap (OEH): We define OEH as an N×M matrix, where

N and M correspond to the length and width of the space in integer multiples

of a reference length unit (equal to 1 meter in our examples). Each element

in the matrix, ei,j (0 ≤ i < N, 0 ≤ j < M) represents the average localization

error resulting from the given sensor deployment conditioned on the occupant

location being at grid point (i, j). Clearly, the metric cannot be defined if

the occupant was always relatively far from (i, j) with respect to its synthetic

ground-truth location. Specifically:

ei,j =
ΣP

p=1Σ
Tp

t=1{||(xest, yest)
p
t − (xgt, ygt)

p
t || ∗ A

p
t}

ΣP
p=1Σ

Tp

t=1A
p
t

(2.5)

Ap
t =

{︄
1, if ||(i, j)− (xgt, ygt)

p
t || ≤r

0, otherwise
,

where P is the number of occupants in the simulation; Tp is the (discretized) to-

tal amount of time of occupant p simulation (i.e., being present in the simulated

space); (xest, yest)
p
t and (xgt, ygt)

p
t are the estimated and synthetic ground-truth

location of the occupant p in time t. Ap
t is a gating function that infers that the

occupant was at grid point (i, j) if their synthetic ground-truth location is no

further then r from from (i, j). r depends on (and is set equal to) the radius

of the deployed motion sensors and it represents an intrinsic uncertainty due to

the sensing range of the sensors.

• Context–Aware Error Heatmap (CAEH): This indicator is a time-average

alternative of the OEH indicator (which is event-average). In other words, if

an occupant is rarely at a location and the error is high when at that location,
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the error is of no particular importance. On the contrary, high error matters

in highly visited locations. A designer may be willing to accept a high OEH at

some locations if the CAEH at those locations is low. Specifically, CAEH, e
′
i,j,

is defined as follows:

e
′

i,j =
ΣP

p=1Σ
Tp

t=1{||(xest, yest)
p
t − (xgt, ygt)

p
t || ∗ A

p
t}

ΣP
p=1Σ

Tp

t=11
(2.6)

It should be noted that Equation (2.6) considers the importance of each coor-

dinate based on the average behavior of the occupants.

2.2.3 Results

Testbed

In this section, we illustrate our simulation-based methodology for evaluating the de-

ployment configurations of smart applications in indoor spaces, using our own Smart-

Condo™ activity recognition module as the system-under-test and considering its

deployment in two different indoor spaces, shown in Table 2.4. The table shows the

area and the type of activity traces for each environment.

Smart-Condo™ [130] is a one-bedroom condo equipped with various sensors, i.e.

motion sensors, Bluetooth Low Energy (BLE) beacons, and pressure sensors. The

condo, which is designed to simulate a home environment, allows researchers from

different disciplines, such as medicine, rehabilitation, and computer science, to focus

on health–related studies from their own perspectives. We obtain occupants’ activity

trace using ground truth data in [94], where 10 participants were asked to perform a

scripted sequences of activities of daily living in the condo.

Mohammadi et al. [93] have utilized the Waldo Library at Western Michigan Uni-

versity as their testbed for indoor localization using Bluetooth Low Energy (BLE)

signal strength. We use their publicly available dataset [20] and get occupants’ ac-

tivity trace using two out of four participants that were asked to walk inside of the
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Table 2.4: Our testbed for sensor configuration evaluation proof of concept.

Name Description

Smart-Condo™[130] Area: ∼ 70 m2

occupants’ trace: 10 participants performing
ADL

Waldo Library [93] Area: ∼ 3240 m2

occupants’ trace: 2 participants walking in a
library

Figure 2.8: Floor plan and motion sensor locations (dots) for the two real-world
spaces. The radius of motions sensors is 60 cm.

library.

Simulations

Using the Deployment-Configuration Specification module in our methodology, we

create a space model for both environments and acquire a sensor-deployment model

by defining several motion sensor locations. The sensor configuration in Smart-

Condo™ and Waldo library consists of 14 and 48 motion sensors in random locations,

respectively. Figure 2.8 shows the locations of the motion sensors in the two spaces.

We run our methodology on the testbed for all of the participants using the Occu-

pant Activity Simulation and Sensor-Event Observation and Analysis modules. Fig-

ure 2.9 shows our estimated and synthetic ground-truth location, for one example
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Figure 2.9: Estimated and synthetic ground-truth location of one occupant in each of
our testbed environments. For better readability, the X and Y coordinates are shown
separately (upper is X, lower is Y).

participant in each environment. We evaluate sensor deployment in our testbed from

three perspectives: overall performance, context–aware performance, and different

granularity of information.

Overall Performance

We calculate the average of Mean Squared Error (MSE) for all four estimations, run-

ning the simulation for all occupants. In Smart-Condo™, MSE in X and Y dimensions

are 1.16 and 2.09 respectively, while the errors are 14.25 and 6.28 in Waldo Library.

The error values indicate that the sensors in Smart-Condo™ and Waldo Library are

not placed well in Y and X dimensions respectively based on the occupants’ traces.

In terms of OHE, Figure 2.10 shows the average error for all occupants. Given this

figure, we infer that, in order to improve the performance of our system-under-test,

the deployment configuration would benefit from additional sensors, placed in areas

with more error, or, if no additional budget is available, the current sensors could be
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placed in a different configuration.

Context–Aware Performance

We calculate the CAEH for both test spaces (Figure 2.11). The figure shows the

average error for all the occupants based on their traces. The occupants in Smart-

Condo™ spent more time in the kitchen area where we see the CAEH error is high.

A designer noticing the high CAEH and the high OHE in the kitchen area will infer

that the particular area should be a priority if more sensors can be deployed, or if

the sensors are to be re-positioned. By comparison, other areas around the center

of the Smart-Condo™ have a high OHE but the CAEH is low; this implies that this

area would be a less pressing area to pay attention to by putting (or re-positioning)

sensors.

Information Granularity

Depending on the precision requirements for the system-under-test, the OHE and

CAEH matrices can be calculated at different levels of spatial granularity. For ex-

ample, in a space like the Waldo library, we may be interested to find areas with

fewer occupants, in order to adjust the HVAC system. Therefore, a large grid-based

granularity would suffice. That is why we demonstrate OHE and CAEH matrices in

a grid for the library (every grid is a 10m× 10m area).

2.2.4 Discussion

Simulation of SIS applications using different sensor configurations is an essential tool

for researchers to gain a better understanding about, and more confidently forecast,

the performance of their applications. The simulation tools provide a fast, cheap and

easy-to-use prototyping framework for evaluation of SIS applications before the ac-

tual deployment. Despite the traditional approaches, replicating the occupants traces

of the indoor spaces where the application is deployed and comparing them against

the traces inferred by the application under test enables us to evaluate the sensor
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Figure 2.10: OHE calculation for two test cases; yellow and black colors show min-
imum and maximum errors respectively; white color shows areas for which we lack
information. We increase the information granularity for Waldo library to 10m∗10m
blocks level.

Figure 2.11: CAEH calculation for two test cases, with color range similar to OHE
calculation (Figure2.10). Here we also increase the information granularity for Waldo
library to 10m ∗ 10m blocks level.
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configuration from high-level indicators, overall performance, and context–aware per-

formance, and at different levels of granularity. Notice that this process is feasible

when only using a simulator due to the implications of real-world implementations

and modifications.

Overall-performance analysis becomes important when no contextual information

is available. Therefore, by generating random traces, we focus on the average MSE,

comparison diagrams (like Figure 2.9(a)), and OHE parameters. In the Smart-

Condo™ for example, it can be seen from Figure 2.8 and Figure 2.9(a) that our

sensor deployment causes our localization method to err in the y dimension when

y >= 9.7m and y <= 5.5m. Keeping in mind that the MSE value in this dimen-

sion is higher, these observations help us to evaluate the distribution of sensors in

each dimension. Moreover, by using the OHE indicator (Figure 2.10), we are able to

observe places in the floor plan with higher error. This figure suggests that placing

more sensors in the kitchen and the bathroom would potentially increase the overall

performance of our application. Nevertheless, in order to have a generalized analysis,

the set of occupants’ traces should include various traces, which is dramatically faster

and easier to obtain using simulation tools.

When we have contextual information available, context–aware performance anal-

ysis provides a different evaluation perspective. In the Smart-Condo™, the occupants’

traces are replicated using the study that is conducted by Mohebbi et al. [94], where

10 participants were asked to follow a script of activities of daily living. As illus-

trated in Figure 2.11, the CAEH indicator suggests that the sensor deployment in

Smart-Condo™ is mostly deficient in the kitchen area.

We conducted the same analysis of the localization method (proposed in [94], in

the context of the Waldo library. In addition, we can adjust the granularity level of

information to adapt the evaluation more to the application in hand. The deployment

of sensors in a library would very likely be for the purpose of minimizing energy

consumption in the building, as opposed to actually recognizing the specific locations
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of the library members. Therefore, estimating the occupants’ trace within 10m ∗

10m blocks would suffice for such spaces and applications. Moreover, a health–care

application in Smart-Condo™ could potentially be more concerned with the amount

of time elderly people spend in rooms such as bathroom. Thus, estimating agents’

trace within rooms level granularity is adequate.

The OHE and CAEH metrics can be used to find areas that occupants did not visit

and, thus, remained untested. New traces can be generated using the activity simu-

lation module so that to make sure our sensor deployment is evaluated completely.

2.3 Conclusions

Modern buildings are increasingly being instrumented with a myriad of networked

sensors to gain more insight into their operation, particularly occupants’ behaviour

and activities. On the other hand, context-aware simulation methodologies offer

quick, cheap and easy prototyping of such systems for analyzing the performance of

different sensor configurations in terms of high-level metrics.

This chapter investigated the effectiveness of two essential components in SIS sensor

configuration evaluation pipeline. First, we showed that specific contextual informa-

tion, e.g. occupants’ location, could be recognized by analyzing raw sensor readings

via data-driven models. Second, we showed that we could use the recognized con-

textual information to evaluate different sensor deployment configurations. Based on

our proof of concept results, a much broader study of simulation-based context-aware

sensor configuration evaluation for SIS applications is warranted.

Therefore, the rest of the dissertation is focused on defining a unified taxonomy of a

SIS simulation methodologies to identify specifications of a general and high-fidelity

simulation methodology, followed by designing and developing such methodology.

Then, the simulation methodology is used as a building block of a framework for

evaluating different sensor configurations based on their ability to infer contextual

information from synthetic raw sensor readings.
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Chapter 3

Taxonomy Specification of Indoor
Space Simulation Methodologies

The SIS simulation methodologies provide fast and cheap-to-evaluate frameworks

for quickly analyzing SIS applications’ performance before the actual deployment.

Although the tools have been used extensively, no unified taxonomy outlines the fun-

damental components of the tools. This chapter survey related works comprising SIS

simulation methodologies and obtain a unified taxonomy accordingly. The taxonomy

demonstrates the components that simulation tools model and describes the mod-

elling approaches found in the literature for each component. It also specifies the

domain of the tools, i.e. building and application types, as well as the typical eval-

uation methodologies. Such a taxonomy can be a standard for developing future SIS

simulation tools. We utilize the taxonomy to analyze the literature systematically.

We give tags to each paper based on the taxonomy definitions and apply hierarchical

clustering to group the papers. Our bibliometric results show that the taxonomy can

divide papers into meaningful groups.

The following sections describe our survey methodology, followed by the taxonomy

definition. Next, each taxonomy component is described in detail with examples from

the literature. Finally, we explain our bibliometric method and present its results.

This chapter conducts a comprehensive literature review to establish the founda-

tional knowledge necessary to answer R3 research question, specified in Section 1.2:
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A SIS simulation methodology that can simulate various applications and produce

high-fidelity synthetic datasets.

3.1 Survey Methodology

We use a snowballing procedure [151] for the identification and collection of stud-

ies within the scope of the survey. Our research scope is studies that focus on the

simulation of smart, i.e. sensorized, indoor spaces sensitive to occupants’ movement-

and-activity traces. Therefore, the collected publications are considered relevant if

they put forward (a) modelling of occupants and (b) modelling of sensor behaviours.

Our inclusion/exclusion criteria are as follows: non-peer-reviewed papers were ex-

cluded; among the papers that cover the same study, only the most recent study was

included; and out of our research scope (mentioned above) papers were excluded. We

describe our application of the snowballing procedure in the following steps.

3.1.1 Snowballing Procedure

Step 1: Establishing the Initial Set We utilize the combination of the following

keywords on Google Scholar (the actual search was conducted in February 2021):

smart home simulation, smart home simulator, smart indoor space simulation, smart

indoor space simulator, intelligent environments simulation, intelligent environments

simulator. In the start set selection process, we consider papers from different pub-

lishers, communities, and publication years. Accordingly, we choose the list of papers

in Table. 3.1.

Step 2: Iterations For each of the papers in the initial set, we apply two types

of iterations: backward and forward snowballing. In the backward snowballing, we

study the paper’s references and include papers based on our inclusion and exclusion

criteria (mentioned in section 3.1). In the forward snowballing, we study the papers

citing the paper and include the ones based on our inclusion and exclusion criteria.
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Table 3.1: Selected papers for the snowballing procedure’s initial set.

Authors Title

I. Armac and D. Retkowitz [8]—
2007

Simulation of smart environments

J. Park et al. [111]—2007 Cass: A context-aware simulation system for smart home

J. C. Augusto and M. J.
Hornos [11]—2013

Software simulation and verification to increase the reliabil-
ity of intelligent environments

K. Bouchard et al. [21]—2010 Simact: a 3d open source smart home simulator for activity
recognition

K. McGlinn et al. [90]—2014 Simcon: A context simulator for supporting evaluation of
smart building applications when faced with uncertainty

J. Synnott et al. [137]—2014 The creation of simulated activity datasets using a graphical
intelligent environment simulation tool

J. W. Lee et al. [78]—2015 Persim 3d: Context-driven simulation and modeling of hu-
man activities in smart spaces

A. Vasilateanu et al. [144]—2016 Smart home simulation system

O. Kamara-Esteban et al. [69]—
2017

Massha: an agent-based approach for human activity simu-
lation in intelligent environments

N. Alshammari et al. [4]—2017 Openshs: Open smart home simulator

J. Renoux and F. Klugl [117]—2018 Simulating daily activities in a smart home for dataset gen-
eration

S. Golestan et al. [54]—2020 Towards a simulation framework for smart indoor spaces

We repeat the forward and backward snowballing steps on the selected papers in the

previous iteration to identify new papers until no new papers are found.

3.1.2 Bibliometric Overview

This section analyzes the studies included in the snowballing process described in the

methodology section. Following the inclusion and exclusion criteria in our methodol-

ogy (mentioned in section 3.1), we choose 64 studies (from 213 unique authors) whose

distribution over the years is shown in Fig. 3.1. In this methodology, it is impossible

to statistically validate the outcome of the process because there is no ground truth

available. There is no way to establish “the correct” set of publications to include.
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Figure 3.1: Histogram of studies included in our survey throughout the years.

Figure 3.2: Histogram of the studies in terms of different citation counts.

Although we are not claiming that our literature review method collects all the studies

in the literature (which is indeed impossible for any type of literature-review method-

ology), we argue that the collection of 64 studies from different research groups is a

fair sample of studies in the field to be used in this paper. In addition, it should be

noted that studies before 2002 do not align with more recent studies, due to the ad-

vancement of technologies (both hardware and software) such as sensors, actuators,

simulation engines, and computing power. The increasing trend shown in Fig. 3.1

indicates more interest in using simulation tools for designing and prototyping SIS

applications. Fig. 3.2 also shows the histogram of bins of studies where each bin cor-

responds to a different range of citation numbers. The figure shows that most of the

studies have less than five citations which, combined with the growing trend observed
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Figure 3.3: Taxonomy of SIS simulation methodologies.

in Fig. 3.1, the field of SIS simulation is new.

3.1.3 Key Features of SIS Simulation Methodologies

SIS simulation methodologies model the space, sensors, actuators and occupants

(agents), and they are domain-specific, i.e. building type and intended applica-

tion. A taxonomy of SIS simulation methodologies is shown in Fig. 3.3. We detail

each element of the taxonomy in the following sections.

Space Model

The space model defines physical world specifications, including rooms, furniture,

obstacles, etc. It also contains objects virtual agents can interact with, such as a bed,

couch, and television. There are two approaches for space modelling in the literature,

interactive and model driven. Interactive space modelling focuses on user interaction

with simulation software. Users must design the intended indoor space layout and

then place furniture and obstacles using a predefined list of popular before-mentioned

objects in the software. For example, Ho et al. [61] provided a user interface to

select and place prefab instances of structural and home objects. Model-driven space

modelling utilizes data models to provide space specifications, and standardize their
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relations, properties, and data exchange. Recently, studies like [54, 90] utilize Building

Information Modelling (BIM), which is an industry-standard digital representation

of buildings [13]. BIM can be represented in the Industry Foundation Classes (IFC)

format. The IFC data model is an open specification and an International Standard

ISO 16739-1:2018 for describing architectural, building and construction industry

data.

The building model depends not only on the range of applications each simulator

is envisioned to support but also on the specific space modelling approach used.

Interactive, manual, space modelling is impractical for modelling existing buildings

and is inevitable when there is a paucity of CAD, or preferably, BIM models. While

the situation is rapidly improving, calling for a legacy building model to be built from

scratch instead of ingested from an existing data source, limits the applicability of a

tool. Even if the overall space model is ingested, further steps of introducing prefab

objects, such as furnishings, can be challenging for a manual process, especially when

handling large legacy buildings.

Sensor Model

The sensor model defines specifications, such as type, sensing area, and location, of

the deployed sensors in space. Based on the agents’ presence and interaction, the sen-

sor model generates synthetic sensor events accordingly. There are three categories

of sensors in the literature. To begin with, the Location Sensitive (LS) sensor type

denotes the types of sensors that trigger based on measurements caused by agent(s)

physical presence inside their sensing area. Examples of LS sensors are passive in-

frared (PIR) motion sensors, an RFID. Next, the Interaction Sensitive (IS) sensor

type is a type of sensor whose state changes depend directly or indirectly on the

agents’ interaction with the space, such as door sensors. Examples of IS sensors are

pressure sensors, switches and smart objects (i.e. report their on/off states). Fi-

nally, the Environment Sensitive (ES) sensor type denotes the sensors that measure
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environmental parameters within a specific sensing area. Examples of ES sensors are

temperature and humidity sensors.

Actuator Model

The actuator model consists of the specification, such as type, location, and actuating

behaviour of the deployed actuators in the space. They mainly change the state

of a particular object, e.g. closing/opening a window or adjusting environmental

parameters such as temperature. Actuators’ operations depend directly or indirectly

on the sensor readings. Accordingly, there are two types of actuators in the literature.

First, the Sensor-Controlled (SC) actuators operate based on the decisions directly

derived from sensor readings. Most SC actuators employ rule-based methods for

the decision-making process. For instance, an actuator turns off the heater when

the indoor temperature is above 23 Celsius. Secondly, the Inference-Controlled (IC)

actuators operate based on the outcome of an inference algorithm that ingests the

sensor readings. For instance, an actuator changes the ambient light based on the

current estimated activity of occupants.

Agent Model

The agent model specifies the behavioural characteristics of virtual agents and is

often application dependent. Based on the agent model, agents interact with the

indoor space to perform activities. Borrowing from Synnott et al. [138], we define

three agent modelling approaches. To begin with, the interactive agent modelling

focuses on user interaction with simulation software. Simulators provide a user inter-

face to control the virtual agents, i.e. moving around and performing activities. For

example, the OpenSHS simulator by Alshammari et al. [4] offers a first-person user in-

terface to users for interactive agent modelling. Another approach is themodel-driven,

which denotes the specification of activities such as names, duration, affordance, or

prerequisites, and a policy for the virtual agent. The agent’s policy prioritizes the
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set of activities and actions that virtual agents need to perform and varies from

motivation-driven [88], hierarchy-based [117, 69], agenda-based [22]. Among them,

the hierarchy-based approach is shown that can be adjusted to fit the intended con-

text, e.g. performing Activities of Daily Living (ADL) or office routines [69]. Finally,

the data-driven approach uses real-world agent activity traces as training data for

generative models such as Markov-chain-based models in [37, 60]. An example is

the simulator by Veronese et al. [146] in which the authors proposed a motivation-

driven agent modelling approach with several parameters, such as the likelihood of

performing actions given time. They used real-world datasets to tune corresponding

parameters.

Application Area

The application area denotes the focus area of the simulators. Space, agent, sen-

sor, actuator models, and building type decide the range of SIS applications that

simulators support.

Most simulators can be used as synthetic dataset generators. The main intuition

of synthetic dataset generation is that having access to sensory datasets is necessary

for activity recognition tasks in indoor spaces. The target population of the activity

recognition tasks are primarily people with special needs, e.g. people with dementia,

physical disability, etc. Putting aside the real-world implementation challenges, even

collecting such datasets is complicated by limitations posed by ethics protocols and

by the end-user’s willingness to participate or commit to a study. For example,

Casaccia et al. [31] proposed a simulator to generate trajectory data associated with

activities of daily living. They showed that the data could be used in a classification

task to detect wandering versus typical trajectories. There are other studies whose

intuition of dataset generation is to utilize the dataset for evaluating different sensor

deployment configurations. Such simulators provide metrics to analyze the dataset

accordingly. Golestan et al. [55] presented metrics based on Quality of Context (QoC)
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for the Internet of Things (IoT) applications.

Another frequent application for simulators is that of system design. Designers can

use emulators to quickly prototype SIS applications and systematically test and de-

bug their intended system. There are several focus areas in this application type. To

begin with, several simulators proposed debugging SIS applications regarding actua-

tors’ proper functionality and consistency based on sensor readings such as [101, 105].

Designers can repeat the simulation of specific scenarios without worrying about real-

world environment noise and uncertainty to identify faulty behaviours of actuators.

Among these studies, several works such as [70, 132] incorporate the functionality of

both actual and virtual devices, i.e. emulation. This functionality is suitable for de-

bugging already-existing systems. The designers can improve the controllability of the

systems by using virtual devices for the parts of the systems that are understandably

working correctly. As an example, Stahl et al. [132] proposed the idea of dual reality,

which considers the synchronization of the real and virtual worlds. Another system

design focus is to use software development tools for designing SIS applications. Such

simulators adapt software design approaches for managing the design process. For

example, the simulator proposed in [17] offers a domain-specific design language for

SIS applications. Finally, some studies focus on uncertainty modelling, introducing a

controlled dosage of uncertainty to one or more components of SIS applications, such

as probabilistic sensor modelling [90, 54], or unexpected agent behaviour [123].

A few studies focus on space usage understanding applications. These applications

are suitable for public buildings such as hospitals and libraries where there is no

clear usage definition of spaces before observing how occupants use those areas. For

example, Schaumann et al. [123] illustrated that a hospital corridor could be used as

either a waiting space or a meeting space by defining semantics for particular areas

based on the agent’s activities in the areas throughout time.

Simulators focusing on crowd analysis, investigate the behaviour of a crowd in

public buildings given a scenario, such as hazardous situations. These simulators
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Figure 3.4: Dendrogram of the studies. Each color shows a separate cluster.

usually have coarse-grained agent model granularity, i.e. navigating to the nearest

exit doors in an emergency. These studies suggest methods for handling large-scale

applications in terms of computational resources, e.g., using multi-threading in [122].

Evaluation

Simulators are usually evaluated in terms of usability, scalability, and internal or

external validity. Usability evaluation consists of measurements that determine how

well a specific group of users (SIS designers in general) can use a simulator. The

measurements could be a questionnaire such as [4, 127, 125], or measuring application

design completion time by software engineer students like [22]. More sophisticated

usability studies can be found in [90, 27]. For example, in the study by Burghardt et

al. [27], the authors observed user interactions and identified issues associated with the

SIS design process and proposed possible fixes. The scalability refers to measuring the

required time to execute specific scenarios while increasing the simulation speed [22] or

the size of SIS applications, in terms of devices [79], agents [120], or rules (services) [70,

101]. Internal validity refers to examining the capability of the simulators in terms

of specific application requirements satisfaction and related dataset generation. For

instance, Casaccia et al. [31] investigated if their simulator can produce agents with

wandering patterns of behaviour, based on definitions by Martino Saltzman [87]. On
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the other hand, external validity determines how realistic simulators can produce

synthetic datasets compared to real-world datasets. For example, Golestan et al. [54]

investigated, in a case study, if their methodology can produce a realistic dataset

regarding agent traces and sensor readings.

3.1.4 Publication Clustering

To analyze the collected papers, we first apply hierarchical clustering to systematically

group the studies based on their similarity in terms of taxonomies described in Fig. 3.3

as features. We exclude the evaluation facet because we observed that the type of

evaluation depends on the development stage of the studies. In total, each paper

corresponds to a vector of 16 binary features. Fig. 3.4 shows the dendrogram obtained

from the clustering algorithm. The clusters are merged based on their average distance

in the feature space. The horizontal dashed line shows a cut-off point (roughly equal

to 2.1) introducing nine clusters. We name each cluster based on the papers that fall

into the cluster. Table. 3.2 shows cluster names, their short descriptions, size, and

the related papers’ citations.

3.2 In-Depth Review of the Field

The first cluster, uncertainty simulation, includes papers that emphasize the stochas-

tic parameters of SIS applications. Together with two other small-sized clusters, this

cluster does not merge with the rest of the papers until the last step; therefore, they

have the largest distance from the rest of the papers in the literature.

Fig. 3.4 shows that there are four binary clusters, inference debugging tools, co-

simulation, software tools, and user experience simulation. These clusters focus,

respectively, on debugging applications with IC actuators, using the co-simulation

paradigm for handling large-scale SIS applications, adapting software engineering

tools for managing SIS application development, and using simulation to evaluate

user experience designs. The papers of these clusters explore atypical research areas
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Table 3.2: Clusters information obtained in our literature review.

Name Description Size Citations

Uncertainty
simulation

Includes papers that model unpredictable
events in agent and/or sensor models

5 [105, 90, 123, 54, 67]

Inference de-
bugging tools

Includes papers that support quickly proto-
typing and debugging inference services

2 [22, 104]

Co-simulation Includes papers that present scalable co-
simulation solutions for large-scale crowd
modelling

2 [120, 122]

Emulation Includes papers that present emulation tools
to support coexistence of real and virtual de-
vices and/or easier transitions between vir-
tual and real worlds

4 [125, 70, 23, 132]

Data-driven
agent mod-
elling

Includes papers that focus on modelling in-
door space occupants behaviours using real-
world datasets

9 [146, 60, 37, 41, 102,
91, 27, 11, 110]

Dataset
generation

Includes papers that present simulation tools
to generate datasets for developing indoor ac-
tivity recognition algorithms

30 [18, 73, 79, 137, 78,
144, 117, 55, 31, 14,
21, 48, 51, 116, 4,
127, 145, 92, 99, 69,
29, 134, 26, 30, 131,
61, 8, 150, 53]

Software tools Includes papers that adapt software engineer-
ing modelling languages and tools for more
systematic SIS applications design

2 [129, 17]

User experi-
ence simula-
tion

Includes papers that support quickly design-
ing and testing user experience designs

2 [133, 1]

Services de-
bugging

Includes papers that focus on debugging ser-
vices containing rule-based actuator models

9 [111, 45, 50, 81, 101,
161, 80, 126, 143]

of SIS simulation tools. That is why these small clusters have large distances from

other papers.

The largest cluster, dataset generation, contains papers offering the most typical

usage of SIS simulation tools, i.e. generating synthetic datasets. The data-driven

agent modelling is the closest cluster to the dataset generation cluster because it
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contains papers whose goal is also to generate synthetic datasets with agent models

constructed using real-world data.

The services debugging cluster includes papers that allow quickly designing SIS

applications by incorporating the possibility of debugging SC actuators and recon-

figuration of sensors and actuators accordingly. The closest clusters are software

tools and user experience simulation, which are also concerned with designing SIS

applications and reconfiguring the devices used.

Finally, emulation cluster contains papers that use a combination of real and virtual

devices or offer a smooth transition to real-world setup after designing the system in

a simulation.

In the following, we provide an overview of each cluster, summarize their papers,

and provide insights.

3.2.1 Uncertainty Simulation

The uncertainty simulation cluster contains studies that assume SIS applications con-

sist of both stochastic and deterministic events. Their objective is to model unpre-

dictable System Under Test (SUT) behaviours as modelling either or both stochastic

sensors and agents behaviours. The evaluation of these studies includes external-

validity investigation [54], internal-validity [105], and usability [90].

Taxonomy specifications of this cluster are shown in Table 3.3. Most studies model

uncertainty regarding agent behaviours [54, 105, 67, 123]. Their agent models include

probabilistic methods that consider several parameters such as time and previous

activities, and select the next activity to perform. The [54] and [90] simulators

model probabilistic sensor modelling. The modelling approach assigns a triggering

probability to each sensor considering its distance to the event of interest.
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Table 3.3: Taxonomy specifications of the papers in the uncertainty simulation cluster.
SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model,
BT: Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

O’Neill et
al. [105] -
2013

Model-driven
(class hierar-
chy represen-
tation)

IS (RFID),
LS (motion
sensor)

– Model-driven
(sequential)

Public System de-
sign

Internal
Validity

McGlinn
et al. [90]
- 2014

Model-driven
(BIM via
IFC)

LS (pres-
ence, prox-
imity and
occupancy
sensors),
ES (tem-
perature
sensor)

– Interactive Public and
residential

System de-
sign

Usability

Schaumann
et al. [123]
- 2015

Model-driven
(Bim via IFC)

LS (oc-
cupancy
sensor)

– Model-driven
(hierarchy-
based with
randomness)

Public Space us-
age under-
standing

–

Golestan
et al. [54]
- 2020

Model-driven
(BIM via
IFC)

LS (motion
and beacon
sensors)

– Model-driven
(hierarchy
based with
randomness)

Residential System de-
sign

Agent and
sensor
models
external
validity

Jiang and
Mita [67] -
2021

Model-driven
(topology-
driven with
user-defined
requirements
and prede-
fined rules)

LS (motion
sensor)

– Model-driven
(motivation-
driven)

Public and
residential

System de-
sign

–

Papers Summary

O’Neill et al. [105] argued that there are two key challenges faced by pervasive systems

designers in the testing phase: 1) difficulty of monitoring deployments and 2) tracing

the physical and digital causes of unwanted situations. Their simulator, InSitu, mod-

els situation specifications as a temporal definition regarding users, entities, zones,

and their attributes. In a case study, they defined six situations and showed that

their simulation detects the situation instances. However, the discrete-time intervals

used by the simulation run, in principle, the risk of undetected situations.

McGlinn et al. [90] identified uncertainty modelling as one of the requirements

that smart indoor space simulators should consider. They stated that the modelling
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system’s uncertainties are crucial because they could affect the design decisions. Every

sensor reading can have a level of uncertainty. The uncertainty is captured by an

offset following a Gaussian distribution with variance equal to a given parameter

and mean equal to the sensor’s location. The final sensor reading gets scrambled by

replacing sensor outputs with values from the distribution. The paper’s evaluation

addressed the level of usability of the simulator. First, the configuration, simulation,

and visualization of two applications by subjects were studied using a questionnaire

to obtain the system usability scale and level of efficiency. The questionnaire also

measures the effect of visualizing uncertainties compared to not having them. The

results demonstrate that using SimCon visualization tools is promising in reducing

time spent on design: by visualizing the level of uncertainty, design time is reduced

by a factor of three compared to not visualizing uncertainty.

Schaumann et al. [123] presented a simulator with realistic human behaviour to

analyze space usage understanding. They argued that human behaviours are divided

into planned or unplanned activities. Stochastic human behaviour (in collabora-

tion with other humans) generates contexts within different locations. Analyzing

the contexts and corresponding locations leads to understanding usages of locations.

Therefore, it will be possible to observe if buildings support end-user activities. They

defined events as a combination of three types of information: actors (agents), ac-

tivity, and space. Unplanned events, which are events with collaboration with other

human behaviours, are a list of behaviours that may be performed if certain condi-

tions are met. Sections of the space are labeled according to the type of behaviour

being performed by the agents. The authors argued that the simulator offers more

flexible modelling of agents.

Golestan et al. [54] proposed a simulation methodology for evaluation of different

sensor deployment configurations. They argued that the simulator needs to produce

realistic sensor events as well as realistic agent traces. Therefore, they injected a

controlled level of uncertainty in both agent and sensor models. In terms of agent
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modelling, they used a hierarchy-based approach with randomness in generating a

path between the current and a destination location. For sensor modelling, the au-

thors used a similar approach to [90]. For each sensor, they defined a probability

proportional to the agent’s location and the sensor’s location, i.e. the sensor gets

triggered with a higher probability as the agent is closer to the sensor and vice versa.

In a case study, they found that the simulator realistically models human behaviours

and sensors. However, they found that modeling certain sensors, such as BLE beacon

sensors, is challenging and depends on the exact characteristics of the environment,

e.g., how it impacts wireless propagation.

Jiang and Mita [67] proposed a simulator that generates a diverse set of simula-

tion scenarios for an older individual living alone. The structure of their simulation

methodology consists of a graphical user interface in which users determine high

level parameters for space, and agent models, e.g. functional zones and individual

characteristics respectively. Given the high level information by users, the simula-

tor generates an indoor space and an activity schedule, specifically, a sequence of

activities based on a possibility-based motivation-driven approach.

Insights

The proposed probabilistic agent modelling approaches mainly require adjusting sev-

eral hyperparameters to drastically change the agent behaviours. Therefore, these

approaches are required to be externally valid in at least some test cases. Neverthe-

less, only the paper by Golestan et al. [54] attempted to evaluate the external validity

of their agent model.

In terms of faulty sensor behaviours, in [90], it was defined as a level of uncertainty

for each sensor. Designers are required to manually adjust the uncertainty level in

the design process. Although burdensome and time-consuming, this approach allows

designers to adjust the parameter based on environmental factors. For example,

sensors may be close to a source of interference, leading to faulty readings or occasional
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inability to communicate their data. In [54], false negative sensor readings were

modelled by increasing the probability of a motion sensor getting triggered the closer

an occupant is to the sensor even if, technically, they are already within a broad

sensor coverage range. However, their approach does not consider other factors, such

as those limiting the wireless propagation which is crucial in RF-based beacon sensors.

Coping with uncertainty due to imperfect sensing is also addressed in [105] but

by attributing such imperfections on flawed sensor deployment. Taken together, [54],

[90], and [105], offer a comprehensive, complementary view of ways uncertainty can

be modeled at the sensory level: from agent behavior, to environment, to placement

of sensors.

3.2.2 Inference Debugging Tools

The inference debugging tools cluster incorporates IC actuator models and provide

simulation-based prototyping frameworks to quickly develop and test the behaviour of

actuators given sensor readings. The evaluation methods in this cluster are usability

and scalability analysis.

Taxonomy specifications for this cluster is shown in Table 3.4. Both papers model

IC actuators based on occupants’ location predictions. The actuators use the pre-

dictions and accordingly change the state of specific objects in the space, e.g. turn

lights on/off or show helpful information on screens. As it is stated in [104], several

technical and non-technical factors affect the performance of the designed prototype.

These factors make it difficult to measure the prototype’s performance objectively;

therefore, it is left to the end-users opinion.

Papers Summary

O’Neill et al. [104] argued that effectively identifying unwanted behaviours in con-

textual systems, and debugging such systems is challenging. The authors proposed

a simulation-based user-centric testing of adaptive context-aware systems. Based on
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Table 3.4: Taxonomy specifications of the papers in the inference debugging tools
cluster. SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM:
Agent Model, BT: Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

O’Neill et
al. [104] -
2009

Interactive LS (motion
sensor)

IC (light
switch)

Model-
driven
(sequen-
tial)

Public System de-
sign

Usability

Bruneau et
al. [22] -
2013

Interactive LS (motion
sensor),
ES (tem-
perature
sensor)

IC (light
switch)

Model-
driven
(sequen-
tial)

Public System de-
sign

Usability
and scala-
bility

the application, designers need to define a set of requirements (e.g. in a smart

lighting system application, end-users should not stay in the dark). The simulator

continuously monitors the state of the application and reports alerts if the defined

requirements are violated. Their case study reports on the structure of the simulated

building, which is a three-storey office building with 104 rooms furnished with 520

desks, 352 chairs, and 257 desktop computers. The paper does not report any metrics

about simulated devices, or agents, or performance. Their simulator was evaluated in

terms of efficiency (designers effort), reliability (how often the simulator has false pos-

itives in detecting the prototype’s flaws), and repeatability (the ability to reproduce

unwanted situations for further investigations).

Bruneau et al. [22] presented DiaSim. DiaSim’s input is the intended application’s

description as a set of parameters and generates simulation logics and executes the

application for visual debugging. Four requirements are defined for their simulator

based on embedded systems simulators: area-specific simulator, transparent simula-

tion, testing a wide range of scenarios, and simulation renderer. The architecture

of their simulation methodology consists of three taxonomies: contexts, controllers

(such as room occupancy detection and heat regulator), and entities (such as sensors

or other sources of information like calendar). They indicated that the simulator can

be used to visually monitor and debug pervasive computing applications. In order to
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Table 3.5: Taxonomy specifications of the papers in the co-simulation cluster. SPM:
Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model, BT:
Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

Sanmugal-
ingam and
Coulouris [122]
- 2009

Interactive IS (smart
objects),
LS (ac-
tive bat)

– Model-
driven
(sequential)

Public Crowd
Analysis

Internal va-
lidity, Scal-
ability

Sánchez et al.
[120] - 2017

Interactive LS (iner-
tial sen-
sors)

– Model-
driven
(hierarchy-
based)

Public Crowd
Analysis

Scalability

show the scalability of their simulator, they modelled an engineering school. They

studied CPU usage with respect to the simulation speed in two phases: low activity

rate (e.g. nights) and high activity rate (e.g. during the breaks). They found that

slower simulation speed uses less than 20% of the particular CPU. But increasing the

simulation speed significantly increased CPU usage.

Insights

Both papers indicated that the simulators could be used for visually monitoring and

debugging. Automatic evaluation of designed prototypes was approached in [104],

by proposing the alerting system. Nevertheless, the situations that give rise to such

alerts need to be traced for further manual analysis. In any case, both approaches

are not straightforward for most real-world situations, especially when large-scale

applications are considered. It would be interesting to investigate the scalability of

their evaluation method in order to specify the type of SIS applications that their

simulators support.

3.2.3 Co-simulation

The co-simulation cluster contains papers that offer large-scale co-simulation solutions

for crowd modelling, i.e. scenarios with several agents. The evaluation methods in

this cluster are scalability and internal validity analysis.
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Table 3.5 shows the taxonomy specifications of this cluster. The space modelling

method used in this cluster is interactive, which is cumbersome when applied to

existing large scale buildings. Therefore, the scalability evaluations of the simulators

are focused on the sensor and agent modelling. The work in [122] concentrates on

techniques for developing a scalable simulator; whereas in [120], simulator paradigms

were classified and guidelines were proposed for modelling simulators based on the

user’s requirements.

Papers Summary

Sanmugalingam and Coulouris [122] proposed a simulator to address the need for sim-

ulating environments for testing large-scale pervasive computing applications. The

requirements they identified for the simulator are genericity (generic programming)

and pluggability (pluggable statistical distributions to allow modelling different de-

vices’ behaviours and pluggable equations to model different locatables such as occu-

pants). These two requirements offer to model different infrastructures for different

types of applications. The simulator has a state transition controller with a global

clock which manages entities and their relations, agents, tasks, sensor model, etc. For

scalability purposes, the simulator executes each agent on separate threads. In a case

study, the authors found that in an airport (529,547 m2), the simulator can add as

many as 2.5 agents per square meter on average. In this case, the average movement

speed of the agents reduces to 0.2 (m/s).

Sánchez et al. [120] argued that combining and synchronizing various domains

that coexist and evolve in simulation is challenging since including all the domains

into a single simulation causes simulators to be slower. The authors presented a

co-simulation methodology which contains four steps. For each step, the authors pro-

vided guidelines that help designers choose a suitable simulation configuration based

on their requirements. The steps of the proposed methodology are 1) selection of

the co-simulation paradigm, 2) particularization of the general simulation model and
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simulation lifecycle, 3) selection of the appropriate coordination mechanism and 4)

design of the user interface and results presentation. The authors performed three

types of experiments. First, they evaluated a crowd simulation by asking an ex-

pert about different quality parameters such as usability, scalability, or the ability

to customize the simulation. The second and third experiments involve measuring

scalability precisely. The authors measured simulation time in the second experi-

ment while increasing the number of agents. In the third experiment, the authors

obtained the probability of successful simulation execution while increasing operation

parameters such as the number of agents. The authors claim that their methodology

produces scalable simulators concerning the number of simulated devices and agents.

Specifically, their methodology can model 2000 agents, which requires around 105 (s)

of simulation time on average.

Insights

The methodologies of the papers considered flexibility in defining and deploying dif-

ferent devices. However, only the evaluation criterion in [120] included the flexibility

analysis. Their results show that designers using their simulation methodology will

likely find new devices easier than baseline methodologies. Nevertheless, further anal-

ysis is required to show the strength of this observation.

The simulator’s interactive approach for space modelling is cumbersome for large

existing, often public, buildings. Furthermore, as noted in [120], the detailed geometry

specifications of the physical space become important for specific applications such as

crowd management. Therefore, model-driven approaches are needed for accurately

modelling the space.

3.2.4 Emulation

The emulation cluster incorporates papers that aim to present simulation tools that

are either hybrid (using a combination of real and virtual worlds or modelling physical
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processes) or provide an easier transition between real and virtual worlds. Several

papers attempted to present emulation-like tools so that virtual and real-world devices

could communicate (for example [70]), while other papers use hybrid frameworks

that introduce human-computer interaction methods which require users to interact

with real-world elements in Virtual/Augmented Reality (VR/AR); for example, by

using a maquette and Augmented Reality (AR) to create space models in [125]. In

principle, there are two primary motivations for using AR/VR technology in SIS

applications. Firstly, it allows studying the users’ activities as they interact with the

application through physiological measures [131] and customizing the applications

accordingly. Secondly, it affords a more realistic user-interaction modality, with users

moving towards and “touching” objects, and thus a more intuitive understanding of

the pre-deployment applications [125]. Therefore, using VR/AR is more related to

studying the end users’ experience with SIS applications than analyzing the technical

infrastructure behaviours, which is the focus of our literature review.

Table 3.6 shows the taxonomy specifications of this cluster. As the table shows,

most of the papers [132, 23, 125] used temperature sensors. Thus, they modelled

physical processes, specifically indoor temperature changes.

Papers Summary

Kang et al. [70] presented a simulator with the ability to add and modify entities

(sensors and actuators) easily. They introduced the concept of a widget, which en-

capsulates the definition of sensors, actuators and services. The architecture of the

simulation is based on the unified context-aware application model in a ubiquitous

computing environment (Ubi-UCAM) [66]. Therefore, widgets can communicate with

real-world services and sensors. Their results prove that the simulator is scalable con-

cerning the number of services, i.e., rules that link sensors to actuators to simulate

the sense-control process. Specifically, the authors found that the simulation time

does not change significantly as the number of services increases from 1 to 6.
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Table 3.6: Taxonomy specifications of the papers in the emulation cluster. SPM:
Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model, BT:
Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

Kang et al.
[70] - 2009

Interactive ES (parti-
cle sensor)

SC model-
driven
(sequen-
tial)

Residential System de-
sign

Scalability

Stahl et al.
[132] - 2011

Interactive ES (tem-
perature
sensor), IS
(RFID)

– Interactive Residential System de-
sign

–

Bruneau et
al. [23] -
2012

Interactive ES (tem-
perature
sensor)

SC Model-
driven
(sequen-
tial)

Residential System de-
sign

Internal va-
lidity

Seo et al.
[125] - 2016

Interactive ES (tem-
perature
sensor)

– Interactive Residential System de-
sign

Usability

Stahl et al. [132] focused on evaluating currently deployed SIS systems regarding

end-user usability. The authors used the idea of dual reality to apply modifications

to the currently deployed systems. The dual reality concept handles the mutual

influence between real and virtual environments while synchronized, i.e., changes to

either of the environments also change the other. After the design phase, Universal

Remote Console (URC) standard and Universal Control Hub (HCH) were used to

implement the Dual Reality concept. The authors argued that their system supports

modelling applications like controlling local and remote places, remote caregiving,

and debugging SIS systems.

Bruneau et al. [23] proposed a framework for virtually testing SIS applications.

For modelling devices, they used DiaSpec, a domain-specific language for networked

entities such as sensors and actuators. They also modelled a building’s heat transfer

and temperature changes, relative humidity and carbon dioxide density. The system

can be deployed in DiaSim, a 2D simulator for DiaSpec for virtually testing different

approaches in terms of energy usage management. The authors demonstrated the

usage of their simulator by testing several algorithms to find the most efficient one
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for regulating HVAC control systems.

Su et al. [125] proposed a hybrid-reality methodology for designing and evaluating

SIS systems. The proposed methodology incorporates a first-person perspective in

Virtual Reality (VR), wherein users can navigate indoor spaces and interact with

virtual objects. It also has a third-person perspective in Augmented Reality (AR),

wherein users can design SIS systems through an interface (e.g. their smartphone).

The latter requires a miniature version of the intended space. The authors found

that their methodology shows a promising user experience. However, they found

no significant differences between AR and VR experiences from the questionnaires

given to their subjects. In addition, they found that although VR is more immersive

than AR, it is more stressful because users feel uncomfortable wearing a VR headset.

Finally, in terms of interacting with objects, it is found that gestures in VR might be

frustrating because of possible errors.

Insights

The simulators presented in [132] and [125] both offer methodologies to improve the

usability of the SIS systems designing process in both real and virtual worlds. Their

approaches are suitable for defining and satisfying end-user requirements in the design

process because designers and end-users can effectively interact. Nevertheless, their

methodology might be time-consuming and burdensome, especially for the end-users.

One could also argue that some frustrations with the use of VR will be ironed out as

the technology evolves and that they are not specific to SIS.

The simulators presented in [70] and [23] encapsulate smart indoor space objects

and use a domain-specific language for two main reasons: smoother transition from

simulation to real-world and vice-versa, and interoperability of virtual and real de-

vices. However, none of the studies evaluated the similarity of the simulation per-

formance compared to the real-world implementations in terms of sensors, actuators,

and services.
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3.2.5 Data-Driven Agent Modelling

The data-driven agent modelling cluster contains papers that aim to utilize real-

world occupants’ trace datasets to train generative models, mainly Markov Chains,

for modelling agent behaviours. The main evaluation criterion of these papers is the

external-validity of their method [37, 60, 91, 146, 41, 102], while internal-validity [110]

and usability [27] are occasionally used as well.

Table 3.7 shows the taxonomy specifications of this cluster. The table shows that

less attention has been paid to space modelling because few studies [27, 102, 110, 91]

utilized an interactive space modelling approach, and other studies [37, 60, 146, 41]

assumed that the space model is given. In addition, most of the studies focused on

residential building applications since real-world occupants’ dataset in such buildings

is more straightforward to collect and more available than in public buildings. The

only study focusing on public building applications [27] limited the indoor space to a

meeting room.

Papers Summary

Burghardt et al. [27] proposed a tool for assisting designers in developing user be-

haviour detection algorithms. Two steps are proposed in their framework. In the

first step, a GUI is presented to facilitate a Hidden Markov Model (HMM) definition,

such as information about activities like their names, duration, location, and involved

devices. Then the HMM parameters will be constructed based on the information

provided. The second step provides a simulation environment to navigate virtual

agents and perform activities manually. The corresponding agent’s trace is fed to

the trained HMM in the first step. The differences between the information provided

in the first step and the HMM output in the second step are suitable for debugging

indoor space applications.

Dahmen et al. [37] presented a simulation that uses a machine learning-based

synthetic dataset generation methodology. The methodology uses real-world data
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Table 3.7: Taxonomy specifications of the papers in the data-driven agent modelling
cluster. SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM:
Agent Model, BT: Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

Burghardt
et al. [27]—
2009

Interactive IS (RFID) – Data-driven
(HMM trained
on real data)

Public System de-
sign

Usability

Dehman et
al. [37]—
2019

N/A IS (smart
objects)

– Data-driven
(HMM trained
on real data)

Reside-
ntial

Dataset
generation

External
validity

Helal et al.
[60]—2009

N/A IS (smart
objects)

– Data-driven
(HMM trained
on real data)

Reside-
ntial

Dataset
generation

External
validity

Veronese et
al. [146]—
2015

N/A IS (smart
objects)

– Data-driven (a
model based on
agents needs,
e.g. hunger,
tiredness, etc.)

Reside-
ntial

Dataset
generation

External
validity

Elbayoudi
et al. [41] -
2015

N/A LS (motion
sensor), IS
(pressure
and door
sensors)

– Data-driven
(HMM trained
on real data)

Reside-
ntial

Dataset
generation

External
validity

Noury et al.
[102] - 2012

Interactive LS (motion
sensor)

– Data-driven
(HMM trained
on real data)

Reside-
ntial

Dataset
generation

External
validity

Papama-
karios et al.
[110] - 2014

Interactive LS (Kinect
camera)

– Data-driven
(HMM trained
on real data)

Reside-
ntial

Dataset
generation

Internal va-
lidity

Mendez et
al. [91] -
2009

Interactive IS (smart
objects),
LS (pres-
sure sensor)

– Data-driven
(HMM trained
on real data)

Reside-
ntial

Dataset
generation

External
validity

and generates agent traces and respective sensor values using the Hidden Markov and

Regression models. First, the HMM generates activity sequences, and each activity

has an HMM to generate a corresponding sensor event. Then, their methodology

uses the regression models for each activity to generate a duration of sensor events.

The authors defined a distance measure based on Dynamic Time Warping (DTW) as

their evaluation metric. They showed that their methodology produces more realistic

datasets in terms of the metric than a random model, other similar datasets, and the

same data from different observation intervals.

Helal et al. [60] proposed a methodology to obtain datasets from real-world indoor
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spaces. Firstly, they offered a standard definition of SIS datasets; secondly, they

utilized a machine learning method to generate datasets similar to existing ones.

For the first purpose, the authors used an XML-based standard for sensory dataset

description language (SDDL), i.e. a hierarchical collection of elements and their

attributes such as meta-data, dataset parameters, and sensor events. The authors

then utilized a Markov Chain-based algorithm for dataset generation. They used

currently available datasets to construct the algorithm’s parameters. Specifically, they

obtained a transition matrix that describes activity transitions, probabilistically, two

probability density functions for each activity representing its duration and respective

sensor value. The authors used DTW to compare the synthetic data with ground

truth. Using the model is promising, but issues arise for more complex datasets, such

as different sensor types.

Veronese et al. [146] proposed a simulation methodology, SHARON, designed to

complement real-world datasets and simulate occupants’ activities and corresponding

sensor readings. SHARON contains two main layers. The first layer is an agent model

that generates daily activity schedules based on a motivation-driven approach. The

second layer is a sensor model that converts the activities to corresponding sensor

readings. Their proposed motivation-driven approach consists of several parameters,

e.g. the likelihood of performing actions given time, the effect of each action on each

need, cause-relation link between needs and actions. They used real datasets to tune

these parameters. They showed that the schedule of the generated activities is similar

to real-world schedules in terms of the Earth Mover Distance metric.

Elbayoudi et al. [41] proposed a simulator for generating synthetic datasets with

different agent traces. The simulator uses the combination of HMM and Direct Simu-

lation Monte Carlo (DSMC) to simulate older adults’ behaviour. Their methodology

ingests real datasets and mimics human activities and corresponding sensor values.

First, a set of parameters about each person’s behaviours must be defined e.g. number

of bathroom visits. Then HMM models a sequence of space (room-level) visits and
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their duration. The probability of going from one room to another depends on the

time of the day and the current activity. The authors modelled motion sensors as sim-

ple room-level presence detectors. The authors evaluated the simulator by profiling

two elderly individuals, one with fewer movements. They showed that the simula-

tor could simulate their corresponding datasets by visually comparing their graphical

representations.

Noury et al. [102] focused on simulating human activities using their available

data in pervasive spaces to generate similar datasets with slight changes. They built

an HMM using collected human activities in a smart home environment. Sensors are

simplified to represent the location (room) of the agent. They evaluated the simulator

based on the location (room number) of the simulated and real occupant’s traces

based on calculating correlations of the traces. They found that their methodology

accurately generates simulated data even for an extended period (one month).

Papamakarios et al. [110] proposed a dataset generation method for producing oc-

cupants’ trajectories while performing ADL. Their methodology first introduces an

ADL specification based on trajectories (how ADLs look in terms of trajectories). The

specification has three elements. Firstly, regions of interest denote where agents are

most likely present during a specific activity. Secondly, a transition matrix that repre-

sents the pairwise probability of regions of interest transitions. Finally, the generation

of transition trajectories produces a path (using a variation of the Dijkstra algorithm

with randomness and smoothness parameters) between two given regions of interest.

The authors used synthetic and real-world data to train two machine-learning models

for detecting activities. The models’ accuracies are a metric to analyze if the datasets

are similar. Their results show that both models perform similarly.

Mendez-Vazquez et al. [91] presented a simulation that combines Markov Chains

and Poisson processes for modelling agent’s behaviour and probabilistic sensor mod-

elling. Their methodology uses real-world datasets (activity label, time, outdoor tem-

perature and energy consumption) to build a Markov chain model. Then it uses Pois-
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son distribution for each activity to generate slightly different timestamps. Finally,

sensor readings generation uses probability distributions based on apriori knowledge,

like the sensing area of each sensor for slightly randomized sensor readings. The

authors used DTW to compare the output of their proposed method, alongside the

output of a constant (simulating a single activity) simulation and a random simu-

lation as baseline methods, with ground truth data. They showed that the dataset

generated with their proposed method is more similar to the ground truth than the

baseline methods.

Insights

The agent models’ accuracy in the papers depends on sufficient ground-truth data;

thus, it is not immediate and requires expensive real-world experiments. Furthermore,

the amount of ground-truth data is related to the granularity level of the simulation

methods; that is, more granular agent traces and sensor types require more ground-

truth data. That is why the simulators presented in [102] and [41] have room-level

agent traces, and the simulator presented in [60] models only one sensor type. Nev-

ertheless, the large granularity of agent traces and few sensor types limit the kinds of

applications that the simulators support.

Another approach to cope with the lack of data is used in the simulator presented

in [27]. The authors used expert knowledge as prior knowledge to tune the parameters

of their data-driven agent modelling approach. However, the process requires manual

back-and-forth modification of the parameters for consistency between the designed

agent model and the deployment application. Therefore, their approach might be

challenging for specific applications or might dismiss certain information due to the

subjectivity of the approach.
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3.2.6 Dataset Generation

The dataset generation cluster incorporates papers that use simulators to produce

synthetic datasets for quickly testing data-driven algorithms, such as activity recog-

nition in indoor spaces or using the dataset to evaluate different sensor placements.

The evaluation metrics used are external-validity (such as [29], internal-validity (such

as [61]), usability (such as [92, 134]), and scalability (such as [79]).

Table 3.8 shows the taxonomy specifications of this cluster. The table shows that

most of the papers did not consider modelling actuators. The reason is that the

applications of the simulators are mostly either dataset generation for quickly design-

ing and testing activity recognition models, especially in residential buildings (such

as [78, 31]) or quickly evaluating different sensor deployment configurations (such

as [150, 55]). In addition, most of the papers used an interactive approach for agent

modelling because the approach principally offers more variation of agent traces than

model-driven approaches if a large enough number of users interact with the simula-

tors. Therefore, it can be seen as a suitable sampling technique because the resulting

dataset is a representative subset of a larger population, which is necessary for train-

ing machine learning models. However, the process is time-consuming and requires

much effort. On the other hand, the simulators that used model-driven (hierarchy-

based) agent modelling [69] claimed that the method is good enough for generating

both ADL traces in residential and office routines in public buildings.

Papers Summary

Armac and Retkowitz [8] presented a simulator for SIS applications for residential

buildings. The goal of the simulator is to generate synthetic ADL datasets. It speci-

fies SIS devices as reusable software components in the design process. The simulator

requires designers to define accessible and inaccessible areas (obstacles) and place

devices indoors. They need to import a 2D image of the intended space and define

obstacles by placing square tiles of 50 pixels side length. Users can interact with vir-
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Table 3.8: Taxonomy specifications of the papers in the dataset generation cluster.
SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model,
BT: Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

Armac and
Retkowitz [8]
- 2007

Inter-
active

LS (smart
objects), ES
(tempera-
ture sensor)

– Inter-active Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

–

Godsey et al.
[53] - 2009

N/A LS (motion
sensor)

– Inter-active Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

External
validity

Prendinger
[116] - 2009

Inter-
active

IS (RFID) – Interactive Reside-
ntial
and
public

System design –

Bouchard et
al. [21] - 2010

Inter-
active

IS (smart
objects)

– Interactive Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

–

Velasquez et
al. [145] -
2011

Inter-
active

IS (smart
objects)

– Model-
driven
(hierarchy
based)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

–

Merico and
Bisiani [92] -
2011

Inter-
active

LS (oc-
cupancy
sensor), ES
(tempera-
ture sensor)

– Model-
driven
(sequen-
tial)

Reside-
ntial

Dataset genera-
tion

Usability
and scala-
bility

Buchmayr et
al. [26] - 2011

Inter-
active

LS (motion
sensor), IS
(contact
switch), ES
(tempera-
ture sensor)

– Interactive Reside-
ntial

System design –

Kormanyos
and Pataki
[73] - 2013

Inter-
active

LS (motion
sensor),
IS (RFID,
smart ob-
jects)

– Model-
driven
(motivation-
driven)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

–

Mustafa [99] -
2013

Inter-
active

LS (motion
sensor), IS
(pressure
and door
sensors)

– model-
driven
(sequen-
tial)

Reside-
ntial

System design –

Caruso et al.
[30] - 2013

Model-
based

LS (motion
sensor), IS
(door sen-
sor)

– Model-
driven
(habits and
distrac-
tions)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Internal va-
lidity
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Table 3.8: Taxonomy specifications of the papers in the dataset generation cluster.
SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model,
BT: Building Type (continued).

Simulator SPM SEM ACM AGM BT Application Evaluation

Garcia-
Rodŕıguez
et al. [51] -
2013

Inter-
active

IS (RFID) – Interactive Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

–

Cardinaux
et al. [29] -
2013

N/A LS (motion sen-
sor), IS (smart
objects, door
sensor)

– Model-
driven
(motivation-
driven)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

External
validity

Lee et al.
[79] - 2013

Inter-
active

LS (motion sen-
sor), IS (pres-
sure, vibration,
and door sen-
sors), ES (tem-
perature sensor)

– Interactive Reside-
ntial

System design Scalability

Su and
Huang
[134] - 2014

Inter-
active

LS (motion sen-
sor), IS (RFID),
ES(temperature
sensor)

SC
(light
switch)

Interactive Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Usability

Synnott et
al. [137] -
2014

Inter-
active

LS (motion sen-
sor), IS (pres-
sure sensor), ES
(temperature
and humidity
sensors)

– Interactive Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Internal
validity

Sernani et
al. [127] -
2015

Inter-
active

LS (motion sen-
sor)

– Interactive Reside-
ntial

System design Usability

Lee et al.
[78] - 2015

Inter-
active

LS (motion sen-
sor), IS (smart
objects)

– Model-
driven
(hierarchy
based)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

External
validity
and us-
ability

Vasilateanu
et al. [144]
- 2016

Inter-
active

LS (motion sen-
sor)

– Model-
driven
(motivation-
driven)

Reside-
ntial

Dataset genera-
tion (for sensor
placement anal-
ysis)

–

Weitz et
al. [150]—
2016

Inter-
active

LS (motion
sensor), ES
(temperature
and humidity
sensors)

– Model-
driven
(proba-
bilistic
sequence of
activities
and dura-
tion)

Reside-
ntial

Dataset genera-
tion (for sensor
placement anal-
ysis)

Internal
validity

Bang and
Ko [14]—
2017

Inter-
active

LS (camera,
motion sen-
sor), IS (smart
objects), ES
(temperature
sensor)

– Model-
driven
(sequen-
tial)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Internal
validity
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Table 3.8: Taxonomy specifications of the papers in the dataset generation cluster.
SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model,
BT: Building Type (continued).

Simulator SPM SEM ACM AGM BT Application Evaluation

Alshammari
et al. [4]—
2017

Inter-
active

IS (pressure and
door sensors,
smart objects)

– Interactive Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Usability

Kamara-
Esteban [69]—
2017

Inter-
active

LS (motion sen-
sor), IS (smart
objects)

– Model-
driven
(hierarchy
based)

Public
and
reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

External
validity

Spoladore
et
al. [131]—
2017

Inter-
active

IS (smart ob-
jects)

SC Interactive Reside-
ntial

Dataset genera-
tion

Usability

Renoux et
al. [117]—
2018

Inter-
active

LS (room sen-
sors) IS (smart
objects)

– model-
driven
(hierarchy
based)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

External
validity

Golestan et
al. [55]—
2019

Inter-
active

LS (motion sen-
sor)

– model-
driven
(sequen-
cial)

Reside-
ntial

Dataset genera-
tion (for sensor
placement anal-
ysis)

–

Ho et
al. [61]—
2019

Inter-
active

LS (proxim-
ity sensor), IS
(smart objects),
ES (tempera-
ture sensor)

– Model-
driven
(hierarchy
based)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Internal
validity

Casaccia et
al. [31]—
2020

Inter-
active

LS (motion sen-
sor)

– Model-
driven
(sequen-
tial)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Internal
validity

Bicakci and
Gunes [18]—
2020

Inter-
active

LS (motion
sensor), ES
(temperature
and humidity
sensors)

– Model-
driven
(sequen-
tial)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

Internal
validity
(localiza-
tion using
synthetic
dataset)

Francillette
et al. [48]—
2020

Inter-
active

IS (smart ob-
jects)

INF Model-
driven
(Hierarchy
based with
error prob-
abilities per
action)

Reside-
ntial

Dataset gen-
eration (for
activity recogni-
tion tasks)

External
validity

tual agents (up to two agents simultaneously) to produce agent traces by interacting

with environmental objects.

Godsey et al. [53] presented a simulator using the game development libraries in
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C++ (i.e. Gosu and Box2D). The simulator can record and replicate agent traces

that users generate. The authors evaluated the simulator in terms of sensor modelling.

They conducted a real-world experiment wherein subjects were asked to walk within

an instrumented environment at three speeds: slow, average and fast. The authors

also performed the same experiment in the simulator. They collected both real-world’s

and simulator sensor data for comparison. They found that the frequency of synthetic

sensor readings is similar to real-world data. They also found faster simulation speeds

are more likely to cause data loss than slower speeds.

Prendinger et al. [116] presented a methodology for quickly designing and testing

SIS applications using Second Life [124]. The main component of their methodology

is called Twin World Mediator (TWM), which provides an interface for modelling

real-world sensors and devices. Second Life (SL) offers writing scripts for any object

in the environment. TWM is responsible for sending/receiving back-and-forth mes-

sages to/from SL and a sensor modelling component. The quality of the methodology

depends on the sensor model component accuracy. In addition, roundtrip commu-

nication and processing between TWM and SL could be a scalability challenge as

the number of devices increases. Therefore, the methodology should be evaluated

regarding external validity and scalability.

Bouchard et al. [21] proposed a simulator called SIMACT that allows third-party

components to connect to the simulator’s database to receive and store real-time sen-

sor readings. In addition, a set of pre-recorded scenarios, i.e. agent traces, were

also included in the simulator for data consistency. First, however, users can define

their scenarios in an XML file. Then, for each agent’s action, several parameters are

required: duration, the states of the simulation before and after acting (for example,

opening a fridge will have an after markup that describes the open state of the refrig-

erator door), and a parameter that describes if the virtual agent should perform the

activity in the given duration (otherwise the agent is assumed to capture individuals

with cognitive impairments).
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Velasquez et al. [145] introduced a simulator for home care SIS applications to

manage the integration of off-the-shelf devices in assisted living environments. The

proposed system architecture has two main layers. The fundamental layer, the base

layer, deals with all the software (e.g. devices API) and hardware (e.g. sensors).

The second layer, called the meta layer, comprises a database containing all the

information from the base layer, a simulation interface, and an interference engine.

The interference engine observes the state of the simulation and compares them with

a database of pre-defined possible conditions to detect undesirable user behaviours.

The process of detecting unwanted user behaviours is illustrated in the paper as

an example. The authors believe that their simulation methodology is suitable for

healthcare purposes. However, defining the possible states is challenging for most SIS

applications.

Merico and Bisiani [92] developed a tile-based simulator. The environment is com-

posed of several tiles in a grid, wherein each tile could be an obstacle, a free space,

or a sensor. An agent is a special tile that can overlap free space and sensor tiles.

The simulator contains two other components, the DayManager and the HeatMan-

ager, that model daylight and heat evolution, respectively. The authors generated

synthetic datasets with different sizes (one day’s, one week’s and one month’s worth

of data). Their results show that the simulator can produce one month’s worth of

data in 4533.2 seconds.

Buchmayr et al. [26] presented a simulator that models binary (on/off) sensors such

as contact switches, motion and pressure sensors, and temperature sensors. Using a

noise signal, the simulator models faulty sensor behaviours by scrambling the sensors’

reading. The simulator requires users’ interaction to generate agent traces regarding

sensor readings by clicking on any sensor. However, their interactive agent modelling

approach is challenging for numerous deployed sensors, especially in scenarios where

several sensors must be triggered simultaneously.

Kormányos and Pataki [73] designed a simulator for ADL dataset generation. In
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their simulator, the agent modelling has three layers. At the top layer, there are

complex activities such as cooking; the middle layer consists of simple activities such

as going to a location, and the lower layer consists of sensor data representation of

the activities in the top layers. Using a motivation-driven approach, their simulator

models a single occupant living in a smart indoor space. The priority of performing an

activity increases based on the occupant’s personality parameters (physical and basic

needs such as hunger) and prior activities. After deciding which activity comes next,

the agent breaks down the activity into the middle layer activities. Other activities

can interrupt the current activity if their priority gets higher than the current activity.

The simulator models an ideal, general, form motion sensor that reports the relative

distance and angle of the sensed agent(s). How actual agent locations would be

mapped to realistic motion sensors output via this general model is left unspecified.

Mustafa [99] proposed a simulation methodology for recognizing lifestyle patterns.

The methodology has three components. The first component is a sensor database

that stores sensor data. The second component is a knowledge base containing rule-

based behavioural patterns using the sensor database. Finally, the third component

is a rule-based inference engine that consumes the knowledge base patterns for the

recognition task and updates the knowledge base if necessary.

Caruso et al. [30] designed a simulator based on declarative process models [115],

i.e. a minimal set of rules which should be satisfied as a prerequisite of a software

component execution. The simulator uses action theory principles (habits and dis-

tractions) for modelling agents. A user must use the model and define the habits and

distractions. A planner then converts them into a detailed activity log for a virtual

agent to perform sequentially. Using the same agent model in the simulation, the

authors illustrated how different sensor deployment configurations result in different

sensor logs. The authors used a tool for activity recognition (from the Center of Ad-

vanced Studies in Adaptive Systems (CASAS) [34]) and showed that the deployment

of motion sensors and door and window sensors significantly increases the recogni-
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tion accuracy. However, the definition of sensor configuration considers only the type

of the sensors (sensor locations are fixed), which simplifies the sensor deployment

evaluation problem.

Garcia-Rodŕıguez et al. [51] proposed a simulator that can be used to design and

evaluate smart spaces using camera and RFID sensors. The simulator provides a view

of the deployed cameras and RFID readings so that users can decide their location

and rotation. The goal of the simulator is to use sensor readings to detect two types

of video events, namely, output events such as: begins to walk, detected-man-object

disappears, and instantaneous events such as holding, not holding, standing. Then,

the events are converted into a special format so that an inference algorithm can

ingest them as input and output high-level activities.

Cardinaux et al. [29] presented a simulator with motivation-driven agent mod-

elling. They argued that modelling occupants’ behaviour is the most challenging

part of developing a simulator. In the simulator’s agent modelling, the probability

of performing an activity increases linearly from the last time of being performed.

This model is useful for modelling daily recursive activities, such as cooking meals.

The authors showed, specifically for the breakfast activity, that virtual agents per-

form the activity at a similar time of the day compared to an actual participant.

They also showed that the number of kettle sensor activation (it is assumed that an

accelerometer is attached to the kettle) is similar in both simulation and real-world

experiments.

Lee et al. [79] presented UbiSim, a simulator that allows designers to quickly ex-

amine different sensor configurations and find the best one based on their needs. The

simulator is envisioned to support a wide range of residential applications because it

models LS, IS, and ES sensor types. A user is required to navigate virtual agents and

perform activities. The agent traces and corresponding sensor readings are collected

temporally to form a synthetic dataset. The authors evaluated the scalability of the

simulator by increasing, each time, the number of sensors of a specific type and ob-
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taining separate processing times. The authors report that the processing time for

all sensor types remains stable with a negligible increase. More specifically, the sim-

ulation execution duration using 10 and 170 numbers of vibration-detection sensors

are 17.1 (ms) and 18.8 (ms), respectively.

Su and Huang. [134] presented an easy-to-use simulator for non-technical users.

Users can construct an indoor space in a 2D mode in their simulator and view it in

3D afterwards. It offers a user interface for placing objects, sensors, actuators and

the defining rules that associate sensor readings to actuators. The authors studied

the usability of the simulator and found that their simulator is easy to use, but it is

not a professional tool for simulating complex scenarios.

Synnott et al. [137] proposed IE Sim, which can generate datasets associated with

normal/hazardous scenarios. A user needs to interact with a virtual agent’s simulator

to perform activities. The intuition about the interactive agent modelling approach is

that even a simple activity, like making coffee, can be performed in different ways. The

simulator provides an object toolbox, which offers a wide range of indoor objects and

sensors. Also, it is possible to create new objects using IE Sim. IE Sim gathers sensor

readings throughout the simulation. The authors illustrated that the simulator’s

data can be used to detect three types of hazardous activities: leaving the bathroom

tap running, leaving the oven on and leaving the main entry door open, as well as

overlapping activities like sitting on couch and watching TV in the middle of making

coffee. IE Sim utilizes interactive sensitive sensors and interactive agent modelling.

Sernani et al. [127] presented a simulator called Smart Tales, a game for non-

technical users to increase their familiarity with the core concepts of SIS systems.

Users are required to control virtual agents, perform activities in an intelligent indoor

space, and score. The deployed sensors must not detect them. On the other hand,

an engineer/designer designs each level. If users get recognized, the engineer scores.

They evaluated their system using pre- and post-experiment questionnaires regarding

subjects’ knowledge of smart indoor spaces. They found that using the simulator is
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promising for increasing users’ awareness.

Lee et al. [78] proposed Persim-3D, a context-driven simulator in Unity 3D. The

simulator models agent activities as sequences of actions. The simulator also models

contexts, the state of simulation where certain activities can be performed. The

authors divided real-world and synthetic datasets into different subsets (as different

activities) to evaluate the external validity of the produced synthetic datasets. Each

subset’s conditional probability of each sensor event, given the previous event, is

higher than a defined threshold. They compare each pair of subsets (one from the

real world and one from a synthetic dataset) regarding their sensor events. They found

that the simulator produces synthetic datasets 81% similar to real-world counterparts.

Vasilateanu et al. [144] presented a simulation for quickly testing sensor placements.

They presented a motivation-driven agent modelling based on some attributes such

as hunger and energy. The simulator uses the Graphplan algorithm for activity plan-

ning, which finds a sequence of activities to reach a specific goal (satisfying hunger,

for instance). The simulator models activities in STRIPS (Stanford Research Insti-

tute Problem Solver) style [47], in which each activity has pre- and post-conditions.

Finally, the A* algorithm is used for path planning. The authors argued that several

characteristics of agents could be modelled using their methodology. However, the

paper lacks an evaluation of several test cases to support the claim.

Weitz et al. [150] developed a simulator to generate synthetic datasets suitable for

training and testing machine learning models for recognizing ADL activities. The

simulator uses the discrete event simulation model, operating on three dimensions:

dynamic, discrete and stochastic. The dynamic dimension deals with the representa-

tion of simulation time and activities. The discrete dimension represents state changes

of specific events such as sensors in the simulation. Finally, the stochastic dimension

models unpredictable events such as random occupants’ activities. To model virtual

agents, the authors asked participants to log the start time and duration of certain

activities, such as breakfast, lunch, etc. Then the data is used to construct for each
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activity a probability distribution. Using the distributions, agents perform a sequence

of activities accordingly. The authors demonstrated in an example that the gener-

ated sensor readings visualizations could be interpreted as specific occupant’s health

conditions.

Bang and Ko [14] developed a simulator to obtain datasets for designing activity

recognition algorithms. The intuition of the simulator is that it can be used to provide

balanced data to learning algorithms, i.e. a sufficiently large amount of data for

each user behaviour, regardless of how often it might occur in reality. The balanced

generation is achieved via interactive-based agent modelling. The simulator extracts

several features for each activity, such as location, previous actions, used object ID,

time, and environmental information such as temperature, weather and day of the

week. The simulator then uses the features for classification tasks. However, the

features used might be difficult to describe in real-world applications. For example,

the feature indicating whether an object is used, depends on the definition of what

“use“ of a particular object entails, which could include: placement at a location,

continuous interaction, start/stop activation, etc. Also, while balanced data collection

is useful, it rarely reflects what is available to a system trained by real, unbalanced

data.

Alshammari et al. [4] proposed OpenSHS, a simulator for ADL dataset generation.

First, a designer should use Blender 3D to design the space and the deployed devices.

Then, users should control an agent with the first-person view to generate agent

traces. The simulator stores sensor readings and their states according to participants’

interactions throughout the simulation. The authors evaluated OpenSHS’s usability

using questionnaires given to designers and participants. They found their simulation

methodology easy to use from both the designer’s and the users’ points of view.

Kamara-Esteban et al. [69] presented a simulator, called MASSHA, ’for generating

synthetic datasets for residential and public buildings SIS applications. The simulator

has two types of activities in its agent model: mandatory and non-mandatory. Virtual
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agents prioritize mandatory activities, and if there is no such activity remaining, non-

mandatory activities are selected using a roulette-wheel method based on their pre-

defined importance parameter. The authors used the simulator in two test cases

to generate their corresponding synthetic sensor readings. Then, they compared

the synthetic readings with their real-world counterparts regarding frequency and

duration percentage of activation during a session. Their simulator could accurately

model LS sensors, particularly motion sensors. However, they found modelling IS

sensors challenging because they heavily depend on the agent’s actions, specifically

their order and the duration of each action.

Spoladore et al. [131] proposed a virtual reality-based intelligent home simulator

(SHS). The simulator’s service-oriented architecture enables SIS applications mod-

elling with loosely coupled components. The main component of the simulator is

called knowledge base home, which defines an ontology about the physical status

of the agents and objects. The paper proposed a test case for usability evaluation

wherein users should design a kitchen area for visually impaired users. The authors

used the System Usability Score (SUS), a questionnaire and the simulator’s log (such

as timing, errors, bugs and user comments) to measure the simulator’s usability.

However, the validation was still underway when the paper was published.

Renoux et al. [117] presented a simulator for generating synthetic datasets based

on their intelligent home application, E-care@Home. The simulator’s agent model is

based on a priori knowledge that provides essential information about each activity,

i.e. mandatory or non-mandatory, minimum and maximum duration times, earliest

and latest start times, affordance objects, and prerequisites. The agent model orga-

nizes mandatory and non-mandatory activities within a day to ensure that the agent

performs mandatory activities and, preferably, performs as many non-mandatory ac-

tivities as possible. The authors evaluated agent traces by asking several participants

to mark the visualized version of each agent trace file as real or synthetic. They

found that their agent model can produce a believable activity timeline for a session.

73



Golestan et al. [55] proposed a simulation-based methodology for evaluating dif-

ferent sensor placements. The authors used the CASi simulator [33] for synthetic

dataset generation, which defines space, agent, and sensor models. The sensor events

are sent to an inference algorithm to localize the virtual agents performing activi-

ties in real-time. The output of the localization and the ground truth location of

the virtual agents are compared using their proposed metrics to quantify the qual-

ity of information that sensors provide. The authors showed in two test cases that

the evaluation algorithms offer helpful information to designers to revise the sensor

placements based on context and application.

Ho et al. [61] presented a simulator called SESim, that consists of two main layers:

physical and logical. The physical layer is responsible for modelling and visualizing

agents, environment and objects such as sensors and furniture. The agent model is

based on behaviour trees wherein leaves specify actions, and internal nodes control

the flow of performing actions. The logical layer handles and keeps track of the

simulation parameters such as clock, agent-objects interactions and sensor reading

generation. The authors validated the simulator using three steps. In the first step,

the utility of the simulator is examined. They defined a use case and showed that its

requirements could be satisfied in the design process. In the second step, the quality

of the synthetic dataset generated is evaluated by training and testing an artificial

neural network using the dataset for activity recognition. Finally, they argued that

the model’s performance is reasonable compared to the related work using real-world

datasets.

Casaccia et al. [31] developed a simulator for generating datasets suitable for rec-

ognizing wandering versus typical trajectories of occupants. First, they defined two

models of motion sensors (attached to walls or ceiling, which have circular and cone-

like sensing areas, respectively). The authors described four basic trajectories, direct,

random, pacing, and lapping. Then, they used the synthetic dataset to train a binary

classification algorithm to detect whether trajectories are wandering or normal. The
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results show that the algorithm can accurately predict the wandering behaviour by

95%. However, the same algorithm also should be applied to real datasets to ob-

serve if the accuracy changes. In addition, it is interesting to investigate whether or

not wandering-like activities such as cooking are recognized mistakenly as wandering

behaviour. In these cases, using other sensor types can be helpful.

Bicakci and Gunes [18] developed a hybrid SIS simulation tool for quickly gen-

erating synthetic datasets. The simulator generates agent traces using real-world

occupant’s real-time traces or users’ interaction with the simulation. The authors

demonstrated their simulation by designing a real-world setting and its virtual twin

in the simulator. The tool allows manually adding/modifying simulation parameters,

such as adding an extra event or changing room temperatures. The authors showed

how to utilize different algorithms, such as predicting the occupants’ next location

(room) to adjust the room’s temperature appropriately. They found that the algo-

rithm is accurate using the synthetic dataset. The simulator can also be used for

visualizing currently deployed systems.

Francillette et al. [48] proposed a SIS simulation tool that is capable of mod-

elling the behaviour of people with Mild Cognitive Impairment (MCI) or Alzheimer’s

Disease (AD). The agent modelling is based on a behaviour tree model with error

probabilities for each action. They recorded video clips, each depicting an agent

performing indoor activities, and showed the videos to an expert to label agents as

healthy, MCI or AD. They found that their simulator can accurately emulate MCI or

AD individuals if actions have different error probabilities.

Insights

The synthetic datasets generated should be externally valid regarding agent and sen-

sor models. However, Except for [117, 78, 69, 53, 48, 29], less attention has been paid

to examining the external validity of the simulators. The evaluation is challenging for

agent modelling if the goal is to compare its outputs with ground-truth agent traces.
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The reason is that collecting ground-truth agent traces requires video feeds and care-

ful manual annotations of the feeds (for example, in [54]). An alternative approach is

presented by Renoux et al. [117]. They studied the believability of their agent model’s

outputs by asking several participants to mark the visualized version (a timeline that

shows the start and duration of each activity throughout a day) of each data as real

or synthetic traces. Another approach is to utilize currently available datasets, such

as publicly available datasets from the Center of Advanced Studies in Adaptive Sys-

tems (CASAS) [34]. However, implementing the virtual twin of the datasets’ smart

indoor space might be challenging because space modelling accuracy directly affects

the agent modelling accuracy. Therefore, using a dataset that their space models are

available via IFC for BIM is preferable. The external validity of sensor modelling is

also challenging because real-world sensor readings usually contain noisy readings due

to environmental factors. Several studies such as [78, 69] evaluated the aggregated

sensor readings over a time window to remedy this. Nevertheless, large window sizes

limit the types of applications that the simulator can support.

Less attention has been paid to modelling indoor spaces accurately. Detailed ge-

ometry specifications, such as using BIM, provide essential information about proper

device locations, e.g. a motion sensor on the ceiling occluded by a pillar may not

cover the area assumed. The BIM also represents realistic indoor object models that

can be enhanced to develop interactive objects in simulators.

We found no dedicated dataset generation method for public buildings for related

applications such as energy-saving or occupancy detection. However, these simulators

should use a model-driven space modelling approach for two reasons. First, interac-

tive approaches are tedious and require a lot of work to model large-scale public

buildings. Second, model-driven approaches like BIM contain information regarding

Heating, Ventilation, and Air Conditioning (HVAC) and relations between rooms such

as shared walls or windows direction (north, south, west, east) that can all be used for

temperature evolution modelling. In addition, these applications require multi-agent
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Table 3.9: Taxonomy specifications of the papers in the software tools cluster. SPM:
Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model, BT:
Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

Silva et al.
[129] - 2014

Interactive LS (motion
sensor)

SC (light
switch)

Interactive Reside-
ntial

System de-
sign

Usability

Bertran et
al. [17] -
2014

Interactive LS (motion
sensor), ES
(smoke de-
tector)

SC (dis-
play
text on
screen)

Interactive Reside-
ntial
and
public

System de-
sign

–

modelling, such as in [69], wherein agents perform individual and group activities

such as working at a personal workstation or attending meetings, respectively.

3.2.7 Software Tools

The software tools cluster includes studies whose objective is to systematically assist

SIS application designers in terms of the systems’ easier development, testing and

evolution processes. They adapt software development tools and modelling languages

in designing SIS applications. The evaluation used in this cluster is the usability

in [129].

Table 3.9 shows the taxonomy specifications of this cluster. The thesis focused on

SIS applications that include sensors and actuators to showcase the software tools’

capability for identifying devices and their relations. The papers do not consider

agent models in their development process. That is why they used an interactive

approach for modelling agents.

Papers Summary

Silva et al. [129] presented APEX, a 3D simulation-based prototyping framework.

APEX supports examining different intelligent home designs and evaluating each in

terms of user experience. The development of prototypes is supported through three

layers: a simulation layer (using OpenSimulator [106]), a modelling layer (using CPN

Tools [36]), and a physical layer (using external devices and real users). OpenSim-

77



ulator supports cloud simulations. Therefore multiple users can interact inside a

simulation environment at the same time. CPN Tools can be used to model dynamic

objects and sensors using its collection of predefined modules. However, the agents’

behaviour must be manually defined or use the previously recorded instances. The

authors evaluated APEX using a questionnaire focused on the framework’s usability.

Their results show that the simulator is moderately easy to learn and use.

Bertran et al. [17] used a software design approach to develop a simulator, DiaSuite,

capable of simulating Sense/compute/control (SCC) applications spanning intelligent

indoor spaces, telecommunications, robotics and avionics. DiaSuite offers a complete

development tool for SCC applications. The methodology’s steps are defining en-

tities as taxonomy layer, defining entities relationships as application layer, using

a compiler to generate corresponding implementations, and testing using a simula-

tion interface. The authors showed that several applications from different domains,

including intelligent indoor spaces, can be designed using the methodology.

Insights

The studies in this cluster have different motivations. The simulator in [129], APEX,

provides a tool to ensure the development process obtains the software verification

patterns introduced in [40]. APEX formalized the definition of intelligent indoor

space application elements so that the definitions can be checked against the patterns

for testing/debugging purposes. However, the simulator in [17], DiaSuite, offers tools

to implement the applications more accessible. Therefore, DiaSuite focuses on im-

plementation, and APEX focuses on testing/debugging aspects of SIS applications

development process of the application.

Including model-driven agent modelling in the development process offers system-

atically designing reproducible test cases for debugging purposes. However, it intro-

duces more complexity in the design phase, especially in large-scale applications.
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Table 3.10: Taxonomy specifications of the papers in the user experience simulation
cluster. SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM:
Agent Model, BT: Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

Stahl et al.
[133] - 2010

Interactive LS (blue-
tooth
access
point), IS
(RFID)

– Interactive Reside-
ntial and
public

System de-
sign

–

Abade et
al. [1] -
2014

Interactive LS (motion
sensor), IS
(pressure
sensor)

– Interactive Public System de-
sign

Usability

3.2.8 User Experience Simulation

The user experience simulation cluster includes studies that whose objective is to

utilize simulation environments for quickly developing and validating user experience

designs, including assistive technologies or indoor navigation assistants. The typical

evaluation criterion of this cluster is usability analysis.

The taxonomy specifications of this cluster are shown in Table 3.10. Since the

papers focus on user experience analysis, the agent modelling must be interactive to

incorporate end-users’ interaction with the application in the simulation environment.

In both of the simulators in [133] and [1], designers can deploy different placement of

devices and evaluate the users’ interaction with the system for optimizing the usability

of their SIS application.

Papers Summary

Stahl and Schwartz [133] proposed an intelligent indoor space modelling toolkit called

YAMAMOTO, which assists designers in prototyping such systems in a 3D environ-

ment with the ability to place sensors and actuators. The simulator has an interactive

agent (first-person view), which users can use to generate contextual (location) in-

formation. Its authors argued that many applications needing user locations could

be studied using YAMAMOTO. Furthermore, the simulator is suitable for visualizing
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the state of the real world for a more straightforward debugging process. Specifically,

they focused on finding a suitable placement and direction for displays in large con-

ference rooms. Since the simulator is in first-person view, it is easier for designers

to observe and evaluate different display combinations based on the user’s view and

location.

In the paper by Abade et al. [1], the contribution is to propose a prototyping

framework using APEX, to quickly collect and evaluate user interactions in pervasive

systems to reach user experience goals. They defined the following main components:

1) behaviour component, which manages how services within a SIS application work;

2) physical components that allow connection of real devices such as smartphones

and sensors; and 3) communication component for exchanging data between all com-

ponents in the space. The authors used OpenSimulator [106] to build a 3D model

of a library equipped with sensors and large displays. The displays show taken seats

(the seats are equipped with pressure sensors). Then, the authors asked several users

to use the simulator to walk around and find themselves an empty seat. The goal

of using the simulation environment is that designers could evaluate the number and

location of displays. The authors found that using virtual spaces is promising for

quickly evaluating pervasive systems.

Insights

The focus of the studies is to quickly evaluate the quality of the information that SIS

applications provide to users. Another aspect of analyzing such systems is evaluating

the occupants’ experience using the building. For instance, in a public building

navigation application considering contagious diseases like COVID-19, it is interesting

to evaluate how successful the occupants are in maintaining social distancing while

using the application’s recommendations.
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3.2.9 Services Debugging

The services debugging cluster, similar to the inference debugging tools cluster, also

contains papers that assist designers in developing and testing actuator behaviours.

However, most of the papers in this cluster propose a methodology for systemati-

cally testing rule-based sensor-controlled actuators. Specifically, their methodologies

validate the designed rules by generating different test cases. The typical evaluation

criteria include usability [45] and scalability [101].

Table 3.11 shows the taxonomy of the papers in this cluster. All of the papers

focused on debugging services with actuators. Therefore, they employed sensor-

controlled (SC) actuators. The agent models used are varied. The simulators in [101,

111, 81, 143, 50, 45] use interactive agent modelling because it gives the flexibility to

produce a variety of test cases quickly. On the other hand, the simulators in [80, 161,

126] use model-driven agent modelling, which offers reproducibility in terms of test

case generation, but it might not be as flexible as interactive agent modelling.

Papers Summary

Nishikawa et al. [101] proposed UbiREAL incorporating a GUI to place devices with

two viewing modes, 2D top to bottom and first-person. The path followed by the

virtual agent has to be defined before each run. UbiREAL can model physical quan-

tities such as temperature, humidity, electricity, sound level and illumination. The

simulator offers a comprehensive and systematic testing/debugging approach (besides

visual) to ensure the user’s requirements are met. A rule-based formal model is devel-

oped for the specification of the requirements. The model uses logical expressions to

describe each need by specifying the relations between sensors and actuators. First,

their methodology evaluates the correctness of the conditions by assigning several

values to sensors and actuators. Then, the simulation examines whether certain situ-

ations (occupants’ behaviour) can satisfy the requirements. The authors showed that

the simulator could be used for testing/debugging in a reasonable time. The simu-
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Table 3.11: Taxonomy specifications of the papers in the services debugging cluster.
SPM: Space Model, SEM: Sensor Model, ACM: Actuator Model, AGM: Agent Model,
BT: Building Type.

Simulator SPM SEM ACM AGM BT Application Evaluation

Nishikawa
et al [101] -
2006

Interactive ES (tem-
perature
sensor), IS
(RFID)

SC Interactive Reside-
ntial

System design Scalability

Park et al.
[111] - 2007

N/A ES (tem-
perature
sensor),
IS (RFID
and door
sensor)

SC Interactive Reside-
ntial

System design –

Lertlakkh-
anakul et
al. [81] -
2008

Interactive IS (smart
objects)

SC Interactive Reside-
ntial

System design –

Van
Nguyen
et al. [143]
- 2009

Interactive IS (pressure
sensor)

SC Interactive Reside-
ntial

System design –

Lei et al.
[80] - 2010

Interactive IS (RFID) SC Model-
driven
(sequen-
tial)

Reside-
ntial

System design Internal va-
lidity

Fu et al.
[50] - 2011

N/A
(home
floorplan
image)

IS (RFID,
lights)

SC Interactive Reside-
ntial

System design –

Fernandez
et al. [45] -
2011

N/A IS (smart
objects)

SC Interactive Reside-
ntial

System design Usability

Zhang et al.
[161] - 2011

Interactive IS (RFID),
ES (tem-
perature
sensor)

SC Model-
driven
(motivation-
driven)

Reside-
ntial

System design –

Sernani et
al. [126] -
2016

Interactive LS (motion
sensor), IS
(RFID),
ES (tem-
perature
sensor)

SC Model-
driven
(motivation-
driven)

Reside-
ntial

System design Internal va-
lidity

lator’s frame rate drops only 16% and 20% when using 20 and 50 number of rules,

respectively.

Park et al. [111] proposed a simulator, CASS, to help designers detect inconsisten-

cies of a defined set of rules that incorporate a relation between sensor readings, the

occupants’ locations and the actuators. The authors argued that application-specific
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behaviours can be described in a rule-based fashion. A configuration language deals

with the space and device specifications, including SC actuators such as air condi-

tioners, fire alarms, dehumidifiers, etc. Their simulator can be used for manually

debugging the system.

Lertlakkhanakul et al. [81] focused on using VR to propose a user-centred simu-

lation approach (V-PlaceSims) for intelligent indoor spaces design. Their approach

includes several data models describing space, objects/devices and spatial context

(definition of users and their activity types). The simulator offers a web-based user

interaction in which users can control avatars in the environment. The web-based

approach provides a collaborative environment between the designer and the users.

Also, multiple users can interact with the system to form a multi-agent environment.

The simulator visualizes invisible services that contain different actuation of separate

devices based on users’ interaction and sensor readings. The simulator is suitable for

visually evaluating intelligient indoor space applications.

Van Nguyen et al. [143] proposed an ISS simulator responsible for simulating

context-aware (activities) applications. It consists of two key modules: a context

retriever module, which requests and receives sensor readings, and a rule-based rea-

soning module that manages actuators according to the current state of occupants and

sensor readings. The authors showed that ISS is capable of activating/deactivating

actuators based on sensor readings.

Lei et al. [80] proposed SHSim, an OSGi-based [109] simulator that offers easy

configuration of SIS systems using bundles. Bundles are generic modules describing

each element of the SIS system, such as sensors or code to execute. Different bundle

connections represent different services. The OSGi-based feature of the simulator

promises that virtual devices can be transplanted into real devices with no or minor

modifications. The authors used several bundles that represent different rule-based

test cases. The simulator stores the output of the test cases in a log file.

Fu et al. [50], similar to [80], proposed a simulator based on OSGi. The simulator
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can be configured using a few XML configuration files, i.e. context XML, device

XML, human XML and Environment XML, which include the definition of rule-based

inferences, sensors and actuators models, and agent and space models, respectively.

Devices are abstracted as OSGi bundles, which can be deployed in the OSGi service

platform wherein each bundle can send/get contexts to/from other bundles. In a

simple case study, the authors showed that the simulator could generate a sequence

of contexts from agents, corresponding sensor readings, and actuators.

Fernandez-Llatas et al. [45] adapted the Human Centered Design (HCD) process

for designing smart indoor space systems. HCD is an iterative process that has

four steps: conceptualization phase, designing phase, implementation phase, and test

phase. The authors argued that simulation is beneficial because it speeds up the

process. Therefore, they used the VAALID [142] tool to create and execute simula-

tion scenarios. Before running simulations, users can manage an accessibility check

tool that checks if the system conflicts with the user model in terms of accessibility

(e.g. alarm device volume level is not loud enough for a user with a specified hearing

ability). The usability of the simulator is measured by asking 19 designers to work

with the tool. Designers were given options to score how they liked the experience:

very much, much, moderately, not much, and not at all.

Zhang et al. [161] presented a simulator based on OSGi [109]. The simulator

offers modelling rule-based inference engines using a hierarchical architecture. It also

allows dynamically modifying the rules and defining a method to detect rule conflicts.

The methodology uses a directed graph representation for information circulation

in the system. The authors showed that if a cycle exists in the graph, the rules

construct an infinite loop, which can be used for debugging. Furthermore, the authors

developed three scenarios based on the occupants’ location. Finally, they argued that

the methodology correctly detects the rules conflicts and the infinite loops.

Sernani et al. [126] argued that unpredictable situations could occur in real-world

SIS system designs, which lead to a sophisticated fixing/redesigning process. There-
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fore, the authors adopted Morse, i.e. an open-source robotics simulator based on

the Blender game engine. Morse includes an agent model and several sensor models,

including one for sensed temperatures as a function of distance from a heat source.

The authors demonstrated their methodology in a case study and showed that the

simulator could simulate hazardous scenarios like gas leak detection.

Insights

In most studies, debugging services must be carried out by visually observing the

events in the simulator or manually analyzing the simulator’s log file. Although

these approaches are straightforward to implement, they are error-prone and time-

consuming. The only paper that uses an automatic testing approach is by Nishikawa

et al. [101], wherein the authors used a systematic testing approach via a rule-based

formal model for specifying the relationships between sensors and actuators. First,

however, the scalability of their approach needs to be analyzed to specify the type of

applications the simulator could support.

A common characteristic in this group was disregarding the uncertainty in the SIS

systems, e.g., sensor readings. Probabilistic sensor modelling (such as [54] in the

uncertainty simulation cluster) could affect the designer’s decisions about placement

and type of sensors and their associations with actuators. Therefore, probabilistic

sensor modelling could introduce additional/different and closer-to-reality test cases.

3.3 Discussion

In this review of existing literature, we defined a unified taxonomy for SIS simu-

lation tools. We demonstrated the applicability of the taxonomy by conducting a

survey methodology to identify and collect studies within the scope of the literature.

We used the taxonomy specifications to cluster the studies into meaningful groups

systematically. However, some cases of specific papers whose clusters where derived

incorrectly. This is because of two reasons. First, some simulation tools can be used
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for different purposes; therefore, a simulator could belong to multiple clusters. For

instance, the simulator presented by Prendinger et al. [116] in the dataset genera-

tion cluster can also be a member of the emulation cluster because it incorporates

working with real-world devices. Second, a few simulation tools can be counted as

outliers. For instance, the simulator by Sernani et al. [127] is presented to increase

users’ knowledge about how intelligent indoor spaces work, which is not similar to

any other simulator. For further investigation, fuzzy clustering approaches can be

used to assign to each study a membership percentage to each cluster.

Regarding space modelling, we observe that most of the studies preferred an in-

teractive approach. This is because the interactive method is simpler to implement.

However, it is tedious and error-prone when specifying the geometry of space and

objects. On the other hand, although model-driven space modelling provides very

accurate geometry specifications, it is not readily available (or outdated) for many

spaces or buildings.

In sensor modelling approaches, location-sensitive and interaction-sensitive types

were more popular than environment-sensitive sensors. Most studies utilized motion

sensor modelling as a notable location-sensitive sensor in SIS applications. Motion

sensors are preferred because of being non-intrusive, inexpensive, easy to install, yet

effective in tracking occupants in indoor spaces. On the other hand, in terms of

interaction-sensitive sensors, RFIDs and object sensors were mainly used.

Sensor-controlled actuators dominate studies that used actuators as they are easier

to implement and understand. But, complex applications are expected to emerge

where actuating involves activity recognition and inference-controlled actuation.

The agent modelling approaches used in the literature were either interactive

or model-driven (sequential). The interactive approach can replicate many agent

trace patterns but is costly and error-prone. On the other hand, model-driven

approaches offer faster and more reliable agent models. Among model-driven ap-

proaches, motivation-driven agent modelling could be challenging because it requires
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adjusting several parameters. First, it needs prior knowledge to denote a priority for

each activity. Then, it needs a method to modify the priorities over time. A more

appealing agent modelling approach is hierarchy-based model-driven. As it is stated

in [69], a hierarchy-based model-driven approach can simulate different kinds of oc-

cupants’ behaviours, such as office routines and activities of daily living. Therefore,

this approach appears better to satisfy SIS simulation tools requirements.

It is important to note that synthetic agent traces should be externally valid to

have a concrete sensor model evaluation. The reason is that two very similar sets

of sensor events could result from two different agent behaviours. First, therefore,

a simulator could fail to recognize the activities, and the designer could use other

sensor deployments to resolve the issue. Second, specific actions, such as cooking,

could generate sensor events in a different order every time they are performed. This

difference can be investigated by inspecting dissimilarities in synthetic and real-world

agent behaviours.

Most papers focused on SIS applications for residential buildings. This is be-

cause real-world SIS applications are often assumed to provide services to residents of

those buildings. Fortunately, developing SIS simulation tools for such buildings are

more straightforward, especially regarding space modelling. However, public building

applications are receiving increasing attention [6]. Therefore, SIS simulation tools

should utilize methodologies that support modelling large-scale application deploy-

ments. Specifically, using model-driven space modellings, such as IFC for BIM, and

co-simulation techniques could make the design process more manageable.

Concerning the application domain, most studies concentrated on generating syn-

thetic datasets. Such datasets must have adequate fidelity compared to real-world

datasets. Thus, an interesting research question is to investigate the quality of the

datasets produced for different use scenarios, such as activity recognition. Real-world

and synthetic datasets from the same designed experiment executed in real-world and

simulation worlds should be fed to activity recognition algorithms and compared to
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the outputs. Another application domain is simulating system design, where the main

requirement is to speed up and ease the design process by presenting virtual twins of

the intended systems.

We observed that few papers (such as [54]) examined the external validity of the

simulators. This is because real-world datasets are not immediately available. SIS

simulation tools should replicate real-world settings as faithfully as possible, which

means that synthetic and real-world datasets should be similar. In addition, scala-

bility analysis is essential for the simulation tools envisioned to support applications

for legacy buildings because models are not readily available and because of the scale

of devices and agents needed to simulate.

3.4 Conclusion

Access to a rich sensor readings dataset is an asset in research in SIS applications.

Due to the unavailability of datasets or the uneven characteristics of existing ones (dif-

ferent sensor types, different deployment strategies, etc.) an emerging research field

is to present methodologies for simulating SIS systems. We reviewed and analyzed

the literature to identify a unified taxonomy for the current work. We recognized

four main models involved in the simulation. Specifically, every simulation requires

defining space, sensor, actuator, and agent models based on their needs. We also

identified building type, application, and evaluation criteria that the designers must

define based on their needs and requirements. We applied a survey methodology to

identify and collect papers within the scope of our survey. The bibliometric results

show that our presented taxonomy can divide the related work into meaningful clus-

ters. In each cluster, we found similar papers that focus on either modelling specific

phenomena of SIS applications or specific research questions.
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Chapter 4

SIMsis : A Simulator for Smart
Indoor Spaces

This chapter reports on a SIS simulation methodology that supports the modelling of

indoor spaces, the activities of their occupants, and the behaviours of different types

of sensors. We argue that, for a simulation to help evaluate a sensor deployment con-

figuration, it has to generate realistic event streams of individual sensors over time,

as well as realistic compositions of sensor events within a time window. We have

evaluated our simulator for smart indoor spaces, SIMsis toolkit, in the context of an

ambient-assisted living platform, Smart Condo, which supports the observation and

analysis of Activity of Daily Living (ADL). Our findings indicate that SIMsis pro-

duces realistic agent traces and sensor readings and has the potential to support the

process of developing and deploying sensor-based applications.

This chapter focuses on R3 research question, specified in Section 1.2: A SIS

simulation methodology that can simulate various applications and produce high-

fidelity synthetic datasets.

4.1 Introduction

In principle, a simulator for smart indoor spaces must model the space, the sensors

embedded in it and their behaviors, and the agents that occupy the space. The space

model defines the physical world including rooms, furniture, objects, etc. The agent

89



model supports the specification of the space occupants’ and the activities they per-

form in the space. Finally, the sensor model describes the types of the deployed

sensors and their sensing behavior, as well as the number and placement of the actual

sensors in the space.

Space, agent, and sensor models together contribute to the overall generality and

external validity of the simulator. The space model should accurately capture the

geometry of the space and its interior layout. Ideally it should be general enough to

describe most indoor spaces, including home, office, and corporate building layouts

as well as the objects typically found in them. The agent model should accurately

capture typical occupant behaviors. The model generality relies on capturing the

high-level activities in which the agents are likely to engage in a given space, such

as Activity of Daily Living (ADL) in homes, office routines in corporate buildings,

etc. Finally, the sensor model should enable the simulation of multiple types of

sensors, especially those most likely to be deployed in indoor spaces. One expects

from the sensor model to at least capture, with some fidelity, the fact that an agent

is present within a sensor “coverage area”, or that an action was caused by the agent,

e.g., flipping a switch.

We argue that the external validity of the simulator behavior should be evalu-

ated through comparative time-series analysis of the agent-behavior and sensor-event

traces it produces. In effect, given a specific scenario of a number of agents acting

in an indoor space embedded with a number of sensors, the simulator should pro-

duce agent activity traces similar to the actual real-world agent activity traces and

sensor-event sequences similar to the actual real-world sensor-event sequences.

More specifically, there are two important aspects in examining the validity of the

simulated sensor behavior: the activation sequence of the overall set of sensors and

the temporal sequence of each sensor’s readings. The former denotes the order of

activated sensors in a session, and the latter denotes the values of each sensor reading

throughout a session.
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In this chapter, we describe our work on SIMsis , an integrated simulator for

smart indoor spaces that produces sequences of realistic synthetic data sets, using

space, agent, and sensor models. Our definition of space model is based on Building

Information Modelling (BIM), an industry standard for digital representation of a

built facility [13], represented in the International Foundation Class (IFC) format.

The IFC data model is an open specification, and an International Standard ISO

16739-1:2018, intended to describe architectural, building and construction industry

data. Architectural and engineering tools use IFC to exchange data and geometry

about building models between programs. This choice eliminates the need of devel-

oping special-purpose space models and enables our simulator to accommodate the

complexities and idiosyncrasies of real-world buildings. Furthermore, we define a

hierarchical agent-behavior model, in which virtual agents perform activities in the

modeled space, towards meeting their high-level objectives. This approach enables

the simulation of different occupant behaviors in different settings, such as homes

or offices, where agents are likely to have different objectives and perform activities

afforded by the setting. Finally, our sensor-behavior model takes into account the

space geometry, the agents’ activities as well as the properties of the sensor type

itself. In addition to sensors, actuators can play an important role in smart indoor

space applications, but they are beyond the scope of this work.

We evaluate our simulator against a real-world case study (Smart Condo™ study [94])

and demonstrate that SIMsis simulations generate synthetic data similar to the data

collected in the real-world deployment (our ground truth), in terms of (1) the sensor

activation sequences (SAS), and (2) the temporal sensor readings (TSR).

4.2 Related Work

In this section, we hand-pick the related works from our literature review in Chapter 3

that are closer to our work.

Park et al. [111] proposed an early context-aware simulation system (CASS).
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The main purpose of their simulator is to determine whether rules triggered by sen-

sor readings and the location of simulated users are consistent, i.e., do not result in

conflicting decisions. As such, their interest is in actuation and application behavior,

assuming it can be described in a rule-based fashion. Their simulator does not indi-

cate any automated means for ingesting floorplans and/or scripting of simulated user

activities unfolding over time. A configuration language takes care of all the space

and sensor specification, including devices that can be actuated, e.g., air conditioner,

fire alarm, dehumidifier, etc. At all times, their simulator remains a closed virtual

representation of a physical environment. Conceivably, the rules, once (manually)

debugged for consistency, could be transferred over to an actual system. Yet, no

validation in a real environment was provided.

Buchmayr et al. [25] presented a simulator using the Microsoft .NET framework.

Users are able to import a floor plan image to represent an indoor space. They

simulated anonymous binary (on/off) sensors such as contact switches, motion and

pressure sensors, and also temperature sensors. The simulator adds a noise signal to

sensors’ actual signal and generates simulated signals for modeling faulty sensor be-

haviors. The simulator lacks an agent-behavior model and requires user interaction,

i.e. clicking on any sensor, in order to advance its state, thus producing synthetic

sensor data. Their simulator lacks an explicit space model. In addition, the simula-

tor’s alternative to agent model needs sophisticated and precise interactions and it is

mainly subjective. Finally, the sensor model does not necessarily generalize in terms

of faulty sensor behavior since the problem depends on wide range of parameters that

are impossible/difficult to predict before actual implementation, hence this model

cannot be validated with real-world ground truth.

Persim-3D [78] is a context-driven simulator in Unity3D. The space model is con-

structed from scratch by a user through the Unity3D user interface. Their work views

each sensor as belonging to one of two categories: location-based and object sensors.

The former are triggered from measurements caused by the physical presence of a
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human agent inside their “sensing” area, e.g., a pressure sensor. The latter report

a change in their state caused, directly or indirectly, by an agent, e.g., opening a

door. Confusingly, they consider RFID readers as object sensors, because they report

a “contact” event by reading an agent-carried RFID tag, while technically, an RFID

reader also has a small coverage area. The agent model consist of actions, activities

and contexts. Activities are modeled as sequence of actions and a context defines a

state of simulation where a set of activities (with preconditions) are only allowed to

be perform. In order to demonstrate how realistic the data produced by Persim-3D

are, the authors divided real-world and synthetic data sets into subsets, in which the

conditional probability of each sensor event, given the previous event is higher than

a threshold. Each subset contains a sequence of sensor events up until a sensor event

violates the threshold condition. Therefore, subsets are treated as different activities

and sensor events are related and associated together. Then for each pair, one from

synthetic data set and one from real-world data set, they evaluate if they have the

same sensor events in the same order. They showed that the simulator is able to

produce synthetic data 81% similar to real ones. The space model definition heavily

depends on users and neglects geometrically important details and may be inaccu-

rate. Finally, although the sensors’ behavior strongly depends on the agent’s trace,

the methodology does not validate the agent model. This is important because of

two reasons: first, two similar sets of sensor events could be results of two different

agent behaviors, e.g., two different activities in kitchen trigger relatively the same set

of motion sensors. Thus, the simulator could fail recognizing the activities, and the

designer of such smart indoor spaces could use different sensor deployments to re-

solve the issue. Second, a specific activity, like cooking, could generate sensor events

in different order. This difference can be investigated by inspecting dissimilarities in

synthetic and ground-truth agent behaviors.

There are several studies (like [85, 108]) based on IE Sim [136]. As with Persim-

3D, a user constructs the space model within the simulator, a step that inherently
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endangers the accuracy of the space model. The simulator models door contact, PIR,

and pressure sensors. IE Sim requires an operator to control virtual characters and

perform activities by interacting with the environment.

Lundstrom et al. [85] used IE Sim to simulate ADLs. They showed that the

number of PIR sensor readings over an interval follows Poisson distribution. Also

Ortiz-Barrios et al. [108] statistically studied the feasibility of using IE Sim in order

to generate realistic data sets. They found that since IE Sim needs a human operator,

the software fails to accurately model agents in terms of activity duration. In the

second study [108], the authors reported that the number of sensor events per activity

is significantly similar to real-world data (with confidence level of 95% and p=0.141).

If they separate the events based on the sensor type, i.e. door sensor and pressure

sensor, the similarity in particular is not significant for pressure sensors. These studies

examine as a validity criterion the number of sensor events per activity, and ignore

the temporal ordering of these events.

Similarly, Renoux et al. [117] presented a simulator for generating ADL data sets

based on their smart home application, E-care@Home. The space model should be

defined by users given a floor plan. Sensors are associated to indoor objects, like a

couch or oven, and their states change when a simulated human interacts with the

objects, and room sensors are ambient sensors, i.e. motion and temperature sensors.

Their agent model is based on a priori knowledge that provides important information

about each activity, i.e. mandatory or optional, minimum and maximum duration

time, earliest and latest start time, affordance objects, and prerequisites. Overall,

agents organize mandatory and optional activities within a day in order to make sure

mandatory activities will be performed besides as many as optional activities. In

terms of space model, indoor space definition needs a sophisticated effort in order to

be accurate. In addition, there is no specific definition for indoor objects. Therefore

the space model representation makes the simulation less practical and less accurate

to be used for any intended application. The agent model is evaluated by asking a

94



number of participants if each sequence of activities comes from a real or artificial

agent. They found that their agent model can produce “believable” activity timeline

for a session. Although, their evaluation is limited and could be subjective, their agent

model mimics human behaviors accurately. However, since the agent model needs a

priori knowledge, its accuracy depends mostly on expert knowledge, which could be

costly in time and effort. The sensor model is also compared in terms of percentage

of activation over each day, which is not adequate, because most of the smart home

applications involve time-series data analysis for localization and activity recognition.

OpenSHS [4] is another smart indoor space simulator for ADL data set genera-

tion which can be used by researchers in the field of internet of things and machine

learning. A designer is required to use Blender 3D to design indoor spaces. Then, par-

ticipants interact with the space to generate agent trace. OpenSHS supports pressure

and door sensors, lock devices, appliance switches, and light controllers, and stores

their readings and states according to participants interaction. The authors evaluated

OpenSHS in terms of usability analysis using questionnaires given to both designers

and participants, and they found the results promising. However, the synthetic data

sets are required to be validated in terms of agents trances, sensors readings, and de-

vices states. Yet again, the definition of space and agent models are burdensome and

time consuming and are subject to users error.

In [69], MASSHA, an agent-based simulator was presented for generating synthetic

ADL data sets. A space model is defined by a user given a set of objects and building

elements. The agent model in MASSHA is carried out by a hierarchical model where

activities consist of a sequence of actions. Agents prioritize mandatory activities,

and if there is no such activity, other activities are selected using a roulette-wheel

approach based on their importance. They were able to model sensors in terms of

frequency and duration percentage of activation during a session. However, similar

to previous attempts, the accuracy of the space model depends directly on high-effort

invested by users. Objects and building elements also limit the simulator’s practical
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usage. The agent model enables modeling single or multi agent scenarios such as smart

home or office building applications; but, it lacks validation of the model with real-

world ground-truth data. If we adopt and modify the terminology used in Persim-3D

to location-sensitive (LS) (for their location-based) and interaction-sensitive (IS) (for

their object) sensors, what MASSHA demonstrated using their ground-truth data sets

was the power of LS over IS sensors. However, the temporal granularity of MASSHA,

is big for fine-grained ADL.

Masciadri et al. [88] utilized a simulator called SHARON, in order to, first, comple-

ment real-world data sets, and second, to simulate inhabitants’ activities and corre-

sponding sensor readings. SHARON has two main layers (lacks a definition of space

model): a top layer (agent model), which generates daily activity schedules based

on a motivation-driven approach, and a bottom layer (sensor model), which con-

verts the activities to corresponding sensor readings. They showed that the schedule

of the generated activities is similar to real-world schedules in terms of the Earth

Mover Distance metric. However, it requires real-world training sets; hence, agent

model accuracy depends on having sufficient ground-truth data; thus it is not im-

mediate, and requires real-world experiments. Additionally, the distribution of the

synthetic sensor reading is compared against real-world ground truth given three spe-

cific activities. The comparison suggests that for “cleaning” and “lunch” activities,

the sequences of activation were random, but for “lunch” activity the overall proce-

dure was the same. The “shower” activity, however, had almost the same order of

actions to its ground-truth peer. This comparison shows that although each activity

has a set of predefined actions, they can be performed in different order, hence it is

difficult to validate the behavior of simulated agents and sensors.

Based on the related work and the taxonomy defined in Chapter 3, space models

are generally defined by using the interactive approach. In addition to efforts needed

to design such space as realistically as possible, the simulator software does not neces-

sarily offer capabilities to model any intended indoor space. Moreover, this approach
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makes the simulator less realistic because it may not be able to accurately take into

account the complete geometry specifications.

Agent models are defined using the model-driven approach. Virtual characters

interact with objects based on some behavioral policies, like motivation-driven [88]

and hierarchy-based [117, 69]. The hierarchy-based behavior can be adjusted to fit

the intended context, e.g., performing ADLs, or office routines. Validation of agent

models are carried out by comparing the activity distributions in simulated versus

real data [88], and comparing simulator generated timeline of activities versus human

generated peers [117]. The comparison by [88] is not temporal, which is necessary for

smart indoor space applications. For example, we are required to anticipate the time

and order of activities in order to decide about energy saving policies of a building.

The comparison by Renoux et al. [117] is temporal; however, not only it could be

subjective, but also it is limited to activities performed in specific time and duration.

Instead, it is important to compare the temporal trace of agents based on location

and activity against the real-world ground truth.

Sensor models are shown to be accurate when modeling LS sensors. In the research

most similar to ours [69], the simulator models LS sensors for one (out of two) data

sets, which has regular daily behaviors of an office space. It was found that the simu-

lator produces hourly activation of sensors similar to ground truth. Nevertheless, this

granularity level of analysis is not adequate for many smart indoor space applications.

For instance, the simulation of an aging-in-place application fails to meet its require-

ments as aggregating synthetic data in one-hour intervals does not provide enough

contextual information for caregivers. Our simulator only needs seven minutes data

aggregation to produce realistic sensor readings.

The other sensor type that previous works mostly modeled are IS sensors. However,

this type of sensor is heavily tailored to actions within every activity. Simulation of

this sensor type can replicate real-world environments only when enough, and in

the right sequence, actions are performed within every activity. For various typical
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indoor activities, this may be unlikely or burdensome in practice. This limitation

is reported in [78, 69]. More specifically, Kamara-Esteban et al. [69] found that

their simulator does not produce hourly activation of sensors similar to one (out

of two) of their real-world data set (single user data set), where IS sensors were

deployed. The reasons were: (1) they were not able to match the real-world short-term

(fine-grained) annotations in their experiments, (2) wrongly annotated activities and

actions within each activity, (3) subjects not following consistent behavioral patterns

during real-world experiments, and more importantly, (4) dependence of the IS sensors

to sequence of actions within activities.

4.3 Simulation Methodology, Models, and Validity

Metrics

Figure 4.1 illustrates the architecture of the SIMsis toolkit. It consists of four main

components: (a) human-activity simulation, (b) sensor-event simulation, (c) validity

assessment of agent traces, and (d) validity assessment of sensor events. The first two

components implement the simulation functionalities of the toolkit, while the latter

two implement three metrics designed to evaluate the validity of the simulation and

the synthetic data produced.

Figure 4.1: The software architecture of the SIMSIS toolkit. Real-world measure-
ments module is shown in red color.
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BIMSim
3D [162] renders a 3D model of the simulated space based on its IFC model,

extended with special-purpose object annotations specifying the user interactions

that these objects afford. Virtual agents perform an activity script that meets their

daily objectives, resulting in synthetic agent traces. Given these traces as input,

the sensor-behavior modeling component generates synthetic sensor events. To eval-

uate the external validity of the synthetic agent races and corresponding sensor events,

the SIMsis toolkit supports three metrics: dynamic time warping (DTW) for compar-

ing synthetic agent traces against real-world agent traces, and two, sensor-sctivation

sequences (SAS) and temporal sensor readings (TSR), for evaluating synthetic sensor

events against corresponding real-world sensor events.

To evaluate our simulation methodology (components A and B), we compare the

synthetic agent traces and sensor events it produces against a real-world study in the

Smart Condo™ study [94]. In this study, participants were given a scripted sequence

of typical activities of daily living, and they were asked to perform them in the order

listed in their script (more details about this study is provided in Experimental Eval-

uation section). The Smart Condo™ space was instrumented with motion and beacon

sensors, and their readings constitute the ground truth for our empirical evaluation

of SIMsis toolkit in this chapter. The ground truth regarding the participants’ move-

ments and activities was established by manually annotating video recordings of the

study, in 3-second intervals.

In principle, there are two sources of uncertainty in establishing the ground truth

in such applications. First, timestamp ambiguity, which stems from inaccurate times-

tamps of sensor events since various data sources have different clocks which are not

necessarily synchronized. Furthermore, sensor events may be lost or received by the

application out of order due to problems with the network infrastructure. The sec-

ond source of uncertainty (behavioral ambiguity) lies in the behavior of participants,

because they might perform activities slightly (and sometimes noticeably) different.

Therefore, the first type of uncertainty captures impairments of the infrastructure,
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while the second reflects the non-uniformity or subjectivity in the execution of tasks

across human populations.

4.3.1 Human-Activity Simulation

This module uses our BIMSim
3D [162], to simulate the occupants’ activities in indoor

spaces. This component involves two main features. First, it enables the simulation

designer to review the BIM elements and specify the interactions they afford. Second,

based on a user-configurable model of the simulated agents’ daily objectives and the

desired time period, it visually simulates and produces a trace of all agents’ activities

as they pursue their tasks. In the following, each feature is explained in detail.

Space Modelling: The BIM Editor

In order to run a simulation, a BIM file of the intended indoor environment (in

IFC format) is needed. We have implemented in Unity 3D a BIM Editor (Fig. 4.2)

that visualizes the input IFC file and allows designers to modify and add a layer

of information with the types of interactions that the model elements afford. For

instance, if an object is defined as ”sittable”, agents may choose this element to sit

on, when their task becomes to sit. The edited BIM can then be exported as a new

enriched IFC file. This is the type of BIM that BIMSim
3D expects, namely a BIM with

objects whose properties list the actions that the simulated agents can perform with

them.

Agent Modelling: Task Planner

This module takes as input a user-configurable set of daily objectives for each agent

and outputs a plan, i.e., a sequence of time-stamped activities, for each agent. The

agent’s daily objectives represent the behavioural model of each agent, in terms of

the activities they are capable of (and should be) performing during the day, as well

as the frequency, duration, pre- and post-conditions of these activities. The agent’s

daily-objectives specification is non-deterministic. The agent’s plan is a deterministic
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(a) a rendered IFC file.
(b) a panel for adding/deleting objects, or
adding properties to the model objects.

Figure 4.2: Screenshots of the BIM Editor used in SIMsis toolkit.

time-stamped and coordinate-aware sequence of activities that meets the constraints

implied by the daily objectives. The daily-objectives specification is stored in a JSON

file; a sample excerpt describing sleeping and eating behavior is shown below.

{

"Actions": {

"Sleep": {

"name": "Sleep",

"duration": 480,

"probability": 100,

"occurrence": 1,

"requires": [],

"post": [],

"times": [

[ 0, 8 ]

],

"aliases": []

},

"Eat": {

"name": "Eat",

"duration": 30,

"probability": 100,

"occurrence": 3,

"requires": [ "Cook" ],

"post": [ "Wash" ],

"times": [

[ 8, 9 ],

[ 12, 13 ],

[ 18, 19 ]

],

"aliases": []

},
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}

}

The properties of the actions are explained below:

• Duration: How long the activity will last in simulation time, indicated in min-

utes. A value of 480 would translate to 8 hours of simulation time.

• Probability: The program takes in a list of actions and randomly sorts the list

every time a new action needs to be selected. The actions are then selected

sequentially. This selection method ensures the equal probability of all actions

being selected, which may not be desirable for agent behaviour. To remedy

this, the probability we define is the chances of performing the selected action,

allowing for more variation in behaviour. Probability is indicated from a 0 -

100. If the action is exclusively a precondition, its probability is 0, as it will be

forcibly acted upon when needed, and no other time.

• Occurrence: The maximum number of times this action can occur per day.

• Requires: Actions that must be performed before this action.

• Post: Actions that must be performed after this action.

• Times: Time constraints on when this action can be performed. The range of

times and values are indicated using a 24-hour clock. (Ex. [13, 16])

• Aliases: Alternate names for the action the agent is taking to make them seem

more lifelike. Prevents the creation of redundant actions, as ”Eating lunch” and

”Eating dinner” would effectively be the same thing.

Note that each activity has to be associated with at least one (and possibly more)

object(s) in the IFC file, which affords this activity. Within each simulation scenario,

multiple behavioral profiles may be specified and each simulated agent is associated

with one of them.
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As mentioned above, the task planner takes as input the daily objectives JSON file

and provides a plan for each agent (< time, location, activity >). This plan describes

what activities the agent should be doing together with the time and location for each.

Our simulation is defined by the space, the objects in the space, the agents, and their

activities. The agent is an entity that lives and acts in the space and has its own

behavioural model. The agent’s behaviour can be as complex as desired and depends

on spatial restrictions such as physical barriers. The agent interacts with the objects

in the space, and it is these objects that enable the agent to perform its tasks. These

objects also have their own constraints regarding the agent’s interactions.

An agent trace of length N , A is denoted as a sequence of the agent’s locations (Lt)

and activities (Kt) at timestamp t, 1 ≤ t ≤ N , shown in Equation (4.2). Every two

subsequent timestamps are separated by a time period τ , where τ is the frequency

with which sensors emit their observations.

A = {(A1), (A2), ..., (AN)} (4.1)

= {(L1,K1), (L2,K2), ..., (LN ,KN)} (4.2)

4.3.2 Sensor-Event Simulation

The sensor behavior modeling component includes a specification of the sensor con-

figuration in the space. We model two popular sensor types (according to Chapter 3),

i.e. LS and IS. The sensor behavior modeling component reads the synthetic agent

traces as input and generates a sequence of sensor state-events (fired/unfired) for

every sensor in the modeled space.

Modelling Location Sensitive (LS) Sensors: Each LS sensor is defined as

tuples sLS={ID, x, y, C}, where ID is the unique sensor identifier, {x, y} is the location

of the sensor in the space, and C is the sensitivity of the sensor. In order for an LS

sensor to fire at a particular timestamp (t), the agent’s location at this time (Lt) has

to be within the sensor’s effective coverage area. The effective coverage, C, can be
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defined as C=C0∩G where C0 is the coverage area if no geometry, e.g., occlusion and

boundaries, were introduced by the space, and G is the part of the geometry within

which the corresponding sensor is placed, e.g. boundaries imposed by the geometry of

the space. Depending on where a sensor is placed, the same C0 can result in different

C. Moreover, depending on the particular sensor technology the geometry of the

space can play a more (or less) significant role. For example, PIR sensors are limited

by occlusion, while BLE beacons are much less so their signal can pass through most

residential walls and furnishings, conceptually making G equal to the entire 2D plane.

In this chapter, we conflate into C the impact of the unhindered coverage, C0, and

the geometry-specific impact G.

The synthetic sensor events capture a non-idealized sensor behavior whereby, the

êIDt =1 and êIDt =0 (the synthetic sensor s.ID “fired” and “unfired”, respectively at

a particular timestamp t) is related probabilistically to the agent’s movement to a

location within the sensor’s coverage area, CID. Specifically, we define an asymmetric

error for LS sensors to fire as follows:

Pr(êIDt =1 | Lt ∈ CID)=β(Lt, C
ID, {x, y}ID) (4.3)

Pr(êIDt =0 | Lt ∈ CID)=1− β(Lt, C
ID, {x, y}ID) (4.4)

where 0 ≤ β(At, C
ID, {x, y}ID) ≤ 1 captures the probability that an agent’s location

At at the particular timestamp t will be detected as such by the ID sensor, at location

{x, y}ID, with an effective coverage CID. As an example, also used in the evaluation

section and observed in several related works [2, 3, 128], β(At, C
ID, {x, y}ID) can be

defined as a bivariate normal distribution where the probability depends only on the

distance between {x, y}ID and At when At is inside C
ID, and is zero otherwise (outside

of CID). The intuition of this assumption is that the closer the agent is located to the

“center” of CID, defined by {x, y}ID, the more likely it is that the sensor fires.

In this study, we model two off-the-shelf LS sensor types, i.e. binary infrared

motion sensors and beacon sensors. The binary narrow-beam motion sensors are
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attached to the ceiling and fire if an agent moves within the coverage area under-

neath. The beacon sensors are attached to walls or objects and use the received

signal strength to fire only when a transmitter is in proximity (signal stronger than

−70 dBm, which translates roughly to a distance of 1 m in our setup). Similar to

Mohebbi et al. [94], our simulated sensor deployment includes 14 and 31 instances

of binary motion sensors and beacon sensors respectively, distributed inside of the

space model with a dimension equal to Smart Condo™ (10.5 m × 6.6 m). Sensor

configuration (type, ID, location, coverage area description, and room) reflects the

configuration deployed in the Smart Condo™ study.

Modelling Interactive Sensitive (IS) Sensors: Each IS sensor is defined as

tuples sIS={ID, x, y, C,Q}, where Q is a physical quantity that an IS is sensitive to.

In order for an IS sensor to fire at a particular timestamp, similar to LS sensors, the

agent’s location at this time has to be within the sensor’s effective coverage area as

well as the agent’s activity at this time has to produce a specific physical quantity

that the sensor is sensitive to.

Similarly, we define an asymmetric error for IS sensors to fire as follows. Notice

that f(.) is a function that takes in activity Kt and outputs the physical quantity

that the activity produces. For example, f(Kt = Sit) produces ”pressure” which can

be recognized by a pressure sensor that is close enough to the agent.

Pr(êIDt =1 | Lt ∈ CID, f(Kt) = Q)=β(Lt, C
ID, {x, y}ID) (4.5)

Pr(êIDt =0 | Lt ∈ CID, f(Kt) = Q)=1− β(Lt, C
ID, {x, y}ID) (4.6)

In this study, we model three off-the-shelf IS sensor types, i.e. pressure sensors,

electricity sensors, and accelerometer sensors, that are sensitive to pressure, electricity,

and motion quantities, respectively. The sensors can be attached to any object in the

indoor space. Our IS sensor model ignores the agent’s location for electricity sensor as

its operation does not rely on the agent’s location. Nevertheless, we cannot evaluate
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IS sensors due to unavailability of ground truth IS sensor readings in [94].

4.3.3 Validity of the Agent Traces

This SIMsis component compares ground-truth agent traces (in this chapter, collected

through manual annotation of videos of our real-world case study) against synthetic

agent traces, using a metric based on a variant of dynamic time warping (DTW) [98]

method. Based on Equation (4.2), we represent the real-world and the synthetic agent

traces as A and Â, respectively. Furthermore, we adopt the Euclidean distance as

the basic distance metric between two corresponding real-world and synthetic agent

locations at a particular timestamp, At, and At
ˆ .

DTW temporally aligns A and Â elements in order to minimize the aligning

cost, producing a so-called optimal warping path (CDTW ), under certain conditions,

i.e. boundary, monotonicity, and step size. An accumulated cost matrix shows the

alignment cost between all the location pairs, and the optimal warping path is a path

that connects pair (A1,A1
ˆ ) to pair (An,An̂), vertically, horizontally, or diagonally.

Given CDTW (A, Â) as the cost of the optimal warping path found by DTW, we

calculate the similarity percentage metric between A and Â as follows:

S(A, Â)=
CMAX
DTW − CDTW(A, Â)

CMAX
DTW

× 100 (4.7)

where CMAX
DTW is the maximum for CDTW(A, Â), occurs when real-world and synthetic

traces have the maximum distance in every data point (CMAX
DTW=argmaxi,j(CDTW(Ai, Âj))).

4.3.4 Validity of Sensor Events

SIMsis compares the synthetic sensor events against their real-world counterparts

using two metrics: (1) sensor activation sequence (SAS), and (2) temporal sensor

readings (TSR). The former quantifies the degree to which the simulator maintains

the order of fired/unfired events as compared to the real world; the latter reflects

how accurately the sensor model simulates each sensor’s behavior throughout each

simulation session.
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Sensor Activation Sequence (SAS)

The sensor activation sequence captures essential information about how indoor ac-

tivities are being performed throughout a period of time, depending on the order of

activities, and the amount of time spent on each activity. For example, in healthcare

applications, caregivers can apply appropriate interventions if they observe irregu-

larities to ADL, e.g., out of order activities, or spending too much time on a simple

activity. Hence, the sequence and duration of activities need to be accurately reflected

by a simulation.

Our toolkit (Figure 4.1) offers two metrics for evaluating the validity of the syn-

thetic sensor events produced: the SAS metric examines whether sensor events emit-

ted by the simulated sensors are in the same order as the events emitted by their

real-world counterparts, assuming that the real-world and simulated deployment con-

figurations are the same, including M sensors. We define two matrices, E (Equa-

tion (4.8)), and Ê (Equation (4.9)), as the representations of the real-world sensor

events and synthetic sensor events, respectively, at N timestamps (columns are added

with τ rate).

EM×N=

⎡⎢⎢⎢⎣
e11 e12 . . .
...

. . .

eM1 eMN

⎤⎥⎥⎥⎦ , emn ∈ {0, 1}, n ∈ {1, 2, ..., N},m ∈ {1, 2, ...,M} (4.8)

ÊM×N=

⎡⎢⎢⎢⎣
ê11 ê12 . . .
...

. . .

êM1 êMN

⎤⎥⎥⎥⎦ , êmn ∈ {0, 1}, n ∈ {1, 2, ..., N},m ∈ {1, 2, ...,M} (4.9)

where every emn and êmn indicate the event emitted at a particular timestamp n by the

real-world sensor with s.ID=m and its synthetic counterpart, respectively.

We compare each column in matrix E, Coln(E), n ∈ {1, 2, ..., N} against the

corresponding column in matrix Ê, Coln(Ê), n ∈ {1, 2, ..., N} to quantify the SAS

similarity, by observing the degree to which the sensor events in the two columns,

i.e. elements with a value greater than zero ({i | ein > 0} and {i | êin > 0}) match. We
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denote Coln(E)=0 and Coln(Ê)=0 if there is no sensor event value greater than zero

in column n in E and Ê, respectively, which is the case if no sensor fired at timestamp

n. Due to the inherent uncertainty in the timestamps of the sensor events, we use a

windowing approach in our comparison.

Algorithm 2 describes the SAS algorithm. Given a column corresponding to times-

tamp n, for each event q in Coln(E), the algorithm determines the most similar event,

q̂, that occurred in columns of Ê in the window time-frame. The similarity measure

in this algorithm for two events, i.e. two sensor IDs i and j, is based on Euclidean

distance of sensor locations, dij=||{x, y}i − {x, y}j||, times a parameter, ρij, which

is the length of the shortest path between the rooms where the two sensors are lo-

cated, in a graph representation of the indoor space. In the graph, every room is

represented by a node, and there is an undirected edge between two nodes if and

only if the rooms are adjacent. We denote θ as a special event for each column n if

Coln(E)=0 or Coln(Ê)=0. Accordingly, we assume the following exceptions:

diθ=dθj=dMAX (4.10)

ρiθ=ρθj=ρMAX (4.11)

dθθ=ρθθ=0 (4.12)

where dMAX is the maximum distance that two sensors could have in the space, i.e. fur-

thest corners of the space, and ρMAX is the diameter of graph G, i.e. longest shortest

path in graph G.

Algorithm 2 compares each reading from matrix E against their match in matrix

Ê in terms of root mean squared error (RMSE), recall, precision, and superfluous

ratio (σW ), at different window sizes. Given a window size W , the superfluous ratio

indicates, in average, the number of synthetic events that the algorithm did not map

to any real events in each window time-frame proportion to the number of events in

the window (Equation (4.13)). The metric is normalized, a value equal to zero shows

that there is no excess synthetic events left, while any greater value shows that there
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Algorithm 2 (SAS) Finds a matching list for real-world sensor activation sequence
(SAS) regarding window size and calculates metrics.

Inputs: (1) EM×N : Real-world sensor events (elements eij), (2) ÊM×N : Synthetic sensor events
(elements êij), (3) W : Window size, (4) ρ : All-pairs shortest path between sensors’ rooms
Output: (1) σW Superfluous ratio for W (average across N), (2) RMSE: Root Mean Square Error
(average across N), (3) Recall: Recall score (average across N), (4) Precision: Precision score
(average across N)

1: Xt = {} ∀t ∈ {1, · · · , T}
2: for n = 0 : N do
3: C=Ĉ=M={}
4: SPrecision=SRecall=0
5: if Coln(E)=0 then
6: C={θ}
7: else
8: C={i | ein > 0}
9: end if
10: Ĉ={i | êij , j ∈ {n− [W2 ], ..., n+ [W2 ]}}
11: for k=n− [W2 ] : n+ [W2 ] do

12: if Colk(Ê) == 0 then
13: Ĉ=Ĉ ∪ {θ}
14: end if
15: end for
16: for q ∈ C do
17: q̂=argminj∈Ĉ(dqj × ρqj) // note the exceptions made in Equations (4.10)–(4.12)

18: M=M∪ {(q, q̂)}
19: end for
20: Ĉu={i | i ∈ Ĉ, (j, i) ̸∈ M, j ∈ C}

21: σW=σW +
|Ĉu|
|Ĉ|

22: RMSE=RMSE +
∑︁

(i, j)∈M
d2ij

23: SRMSE=SRMSE + |M|
24: for i ∈ {1, 2, 3, ..., M, θ} do
25: if i ∈ C then
26: SRecall=SRecall + 1,
27: SPrecision=SPrecision + 1
28: else if i ∈ Ĉ then
29: SRecall=SRecall + 1
30: end if
31: TP={i | (i, i) ∈ M},
32: FP={g | (g, i) ∈ M, g ̸= i},
33: FN={g | (i, g) ∈ M, g ̸= i}

34: Recall=Recall+
|TP|

|TP|+ |FP|
,

35: Precision=Precision+
|TP|

|TP|+ |FN|
36: Recall=

Recall

SRecall

, Precision=
Precision

SPrecision
37: end for
38: σW=σW

N , RMSE=
√︂

RMSE
SRMSE

, Recall= Recall
N , Precision= Precision

N

39: end for
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were excess number of such events. The intuition behind this definition is motivated

by the case where all the synthetic sensors fire all the time; in this case, the SAS

algorithm would always find, for any given sensor event in the real-world matrix E,

a matching event from matrix Ê. Although this case results in an RMSE equal to 0

and precision and recall both equal to 1, it also exhibits the maximum superfluous

ratio (≈1), implying that that synthetic sensor events in each column do not provide

much information about agent traces.

σW=
1

N

N∑︁
n=1

|Ĉu|
|Ĉ|

(4.13)

Algorithm 3 (TSR) Finds a matching list for real-world temporal sensor readings
(TSR) regarding a given window size and calculates metrics.

Inputs: (1) EM×N : Real-world sensor events (elements eij), (2) ÊM×N : Synthetic
sensor events (elements êij), (3) W : Window size,
Output: (1) RMSE: A set of Root Mean Square Error for sensors, (2) Recall: A set
of recall score for sensors, (3) Precision: A set of precision score for sensors,

1: M={}
2: for m=0 : M do
3: C={eij | i=m}
4: i=0
5: for r ∈ C do
6: Ĉ={êij | i=m, j ∈ {i− [W

2
], ..., i+ [W

2
]}}

7: r̂=argminj∈Ĉ(|r − j|)
8: M=M∪ {(r, r̂)}
9: i=i+ 1
10: end for
11: TP={i | i > 1, (i, i) ∈ M},
12: FP={g | (g, i) ∈ M, g > i},
13: FN={g | (i, g) ∈ M, g < i}

14: RMSE=RMSE ∪ {

√︃ ∑︁
(i, j)∈M

|i−j|2

|M| }
15: Recall=Recall ∪ { |TP|

|TP|+|FP|},
16: Precision=Precision ∪ { |TP|

|TP|+|FN|}
17: end for
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Temporal Sensor Readings (TSR)

This metric evaluates the performance of our simulator, for each individual sensor.

The IDth row of matrices E and Ê represent the sequences of events emitted by

the ID real-world sensor and its simulated counterpart. We compare each row from

matrix E against its counterpart from matrix Ê to measure the similarity of real-

world and synthetic sensor readings over time. Similarly to the SAS algorithm, we

use a windowing approach to mitigate the inherent uncertainty of the phenomenon.

Algorithm 3 illustrates the process of finding a matching list for m-th row in matrix

E, Rm, from m-th row in matrix Ê, R̂m. The TSR algorithm compares each row of

matrix E against its matching list in terms of root mean squared error (RMSE),

recall, and precision, given different window sizes.

4.4 Experimental Evaluation

In order to evaluate the SIMsis simulator, we use the data set captured in [94] in our

Smart Condo™ ∼70 m2 apartment. Smart Condo™ is a one-bedroom apartment unit

equipped with several sensors, including motion sensors, and Bluetooth Low Energy

(BLE) beacons. The condo is designated for health-related studies from different

disciplines such as: medicine, rehabilitation, and computer science. In the study

conducted by Mohebbi et al. [94], participants, either alone or in pairs, performed

a sequence of activities of daily living (daily objectives in Figure 4.1). Table 4.1

shows two scripted sequences of activities of daily living and their estimate time of

completion; script one was given to solo participants, and paired participants each

were given one of the scripts. It is worth mentioning that paired participants were

asked to perform overlapped activities together.

Throughout each session, sensor data from 31 BLE beacons and 14 motion sensors

are captured and stored. In addition, the location of the ground truth was produced

by manual annotation of video footage from cameras in the condo. Table 4.2 sum-
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Table 4.1: Scripted sequence of activities of daily living performed by participants
in [94] followed by their estimated time of completion.

Scripts Activities

Script 1 1) Exercise (30 m) 2) Use Toilet (1 m) 3) Change Cloths (1 m 30 s) 4)
Take Bath (2 m) 5) Wash Hands (30 s) 6) Fill Kettle (15 s) 7) Make
Tea (3 m 30 s) 8) Cook Eggs (5 m 30 s) 9) Setup Table (10 s) 10) Eat
Meal (7 m) 11) Take Medicine (30 s) 12) Wash and Rinse Dishes (3 m)
13) Drain Water and Wipe Cabinets (1 m) 14) Broom Kitchen (1 m) 15)
Broom Dining Room (1 m 30 s) 16) Do Laundry (2 m) 17) Iron Shirt
(10 m) 18) Work with Tablet (30 m) 19) Watch TV (5 m)

Script 2 1) Use Toilet (1 m) 2) Change Cloths (1 m 30 s) 3) Take Bath (2 m) 4)
Wash Hands (30 s) 5) Work with Tablet (30 m) 6) Fill Kettle (15 s) 7)
Make Tea (3 m 30 s) 8) Cook Eggs (5 m 30 s) 9) Setup Table (10 s) 10)
Eat Meal (7 m) 11) Take Medicine (30 s) 12) Wash and Rinse Dishes (3 m)
13) Drain Water and Wipe Cabinets (1 m) 14) Broom Kitchen (1 m) 15)
Broom Dining Room (1 m 30 s) 16) Exercise (30 m) 17) Do Laundry (2 m)
18) Iron Shirt (10 m) 19) Watch TV (5 m)

Table 4.2: SIMsis evaluation testbed.

Date #Participants #DataPoints Duration τ

28 June—1st 1 2042 01:41:00 3 (sec)

28 June—2nd 1 2229 01:51:21 3 (sec)

4 July—1st 2 2936 02:26:42 3 (sec)

4 July—2nd 2 2381 01:58:57 3 (sec)

marizes our testbed used in this chapter.

Recalling our methodology (Figure 4.3), we produced a 3D model of the Smart

Condo™ including its objects in BIM Editor. Figure 4.3 shows the 3D representation

of Smart Condo™ floor plan and its objects in BIMSim
3D (Figure 4.3a), the location of

the motion sensors (Figure 4.3b) and the BLE beacons (Figure 4.3c) in our testbed.

The indoor space has five rooms, i.e. kitchen, dining room, living room, bedroom,

and bathroom. The location of sensors from both types, alongside their coverage area

are stored in our sensor model. We test our methodology for the four sessions shown

in Table 4.2 to produce synthetic sensor events. We ran simulations for each session

of the dataset 10 times borrowing the region of similarity idea [69], i.e. given any
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(a) 3D model of the Smart
Condo™ in BIMSim

3D ,
and its objects.

(b) Motion sensor configu-
ration in our testbed; each
with an ID beside it

(c) BLE beacon configura-
tion in our testbed; each
with an ID beside it.

Figure 4.3: Our testbed for SIMsis evaluation and motion sensors and Bluetooth Low
Energy (BLE) beacons configurations.

destination point, virtual agents can randomly select a point inside a circle with some

radius around the destination. We set the radius to 1 m and report the average result.

The real-world sensor events have many outliers, i.e. false readings, that need

to be removed. This is due to the fact that motion and beacon sensors are sensi-

tive to environmental parameters such as light, noise from appliances, interference

from wireless networks, etc. Therefore, we detect and remove the outliers before

our evaluation.

Outlier Removal: We utilize real-world agents trace, A, in order to detect and

remove outlier data points, from real-world sensor events. The objective was to

compute a matrix, M , used as a mask, such that we can obtain “cleaned” sensor

events by calculating Hadamard product [62] in Equation (4.14).

E ′
M×N=EM×N ◦MM×N (4.14)

where E ′ is the matrix representation of the cleaned real-world sensor events. To achieve

this, we calculate pairwise Euclidean distance of the real-world agents trace, A and
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sensors location, S (i.e. S={{x, y}i|i ∈ {1, 2, 3, ...,M}}) in Equation (4.15), and then

subtract the radius of circles circumscribing sensors’ coverage area (denoted by vector

R) from the result in Equation (4.16).

D=|ST − L| (4.15)

B=diag(RRT ) .
−→
1 −D (4.16)

Based on matrix B, we develop matrix M as follows:

M=

⎧⎨⎩ 0 if Bij < 0

1 if Bij >= 0
(4.17)

Every column in matrix M is a “gate” letting sensors pass their readings to the

corresponding column in matrix E ′. However, this process is imperfect due to un-

certainty type 1. Therefore, they are usually slightly different from each other. This

phenomenon raises issues in aligning the agent traces with respective sensor events.

To mitigate this issue, we use a windowing approach to obtain matrix M ′ as follows:

M ′=

⎧⎨⎩ 0 if Mi(j−λ:j+ϵ)=0

1 if Mi(j−λ:j+ϵ)=1
(4.18)

where λ and ϵ are our (asymmetric) window sizes (different from the one we defined

for Algorithms 2 and 3) from left (prior) and right (future) sides, respectively. That

is, λ is responsible to keep a history of sensor readings, whereas ϵ considers near future

sensor readings. The λ and ϵ values should be assigned depending on τ . Finally the

“cleaned” real-world sensor events can be represented as Equation (4.19). Our SAS

and TSR algorithms use E ′ instead of E in our experimental evaluation.

E ′
M×N=EM×N ◦M ′

M×N
(4.19)

4.4.1 Example

We demonstrate our methodology with a simple example. Consider a simple world

consists of seven discrete “cells” (all the cells are part of a room) and five motion

sensors (Figure 4.4).
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Figure 4.4: A simple environment as an example for our methodology. The green
color shows which motion sensor gets activated in each step.

An agent starts walking from the left-most cell to the right-most cell, one cell at

any time unit. The coverage area of each motion sensor is the whole cell that it

is located on (so the radius of circles circumscribing sensors’ coverage area is zero).

The E and Ê matrices, and the vectors in Equation (4.2), sensors location S, and R

are as follows:
A={1, 2, 3, 4, 5, 6, 7}, S={2, 3, 4, 5, 6}, R={0, 0, 0, 0, 0} (4.20)

E5×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 1 0

0 0 1 0 0 0 0

0 0 1 0 1 0 0

0 0 0 0 1 0 0

1 1 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ê5×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.21)

Using Equations (4.14)–(4.19), the outlier removal filters outliers in matrix E:

B5×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 −1 −2 −3 −4 −5

−2 −1 0 −1 −2 −3 −4

−3 −2 −1 0 −1 −2 −3

−4 −3 −2 −1 0 −1 −2

−5 −4 −3 −2 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
M5×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.22)

M ′
5×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, λ = 1, ϵ = 1 E′

5×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.23)

Algorithms 2 and 3 compute sequence and reading matchings using columns and

rows of matrices E ′ and Ê, respectively. Figure 4.5 shows finding a matching for SAS

115



(a) Algorithm 2 execution example for SAS. Colors show the algorithm’s
matching. Note that Col1(E) = θ is matched with Col1(Ê) = θ. However,
Col4(E) = θ is inevitably matched with sensor m2 from Col3(Ê). Colors show
the matching pairs in each iteration of the algorithm.

(b) Algorithm 3 execution example for TSR. The yellow ribbon shows the
window time frame and green shows the algorithm’s matching.

Figure 4.5: Algorithms 2 and 3 execution examples.

with window size equal to 2, and finding a matching for sensor m3’s TSR for window

size equal to 2 (The λ and ϵ are both equal to 1).

4.4.2 Agent Traces Validation Results

First, we compare synthetic agent traces against their real-world counterparts using

the dynamic time warping (DTW) method. Figure 4.6 shows the DTW cost matrices

for each pair of synthetic and real-world agent traces. Each element of the cost

matrix, (i, j) (which is equal to CDTW (Ai, Âj)), shows the accumulated cost of an

optimal warping path starting at lower left corner, (A1, Â1), and ending at (i, j).

Figure 4.6 shows the optimal warping path (black solid path) in each matrix for

(AN , ÂN). Therefore, the optimal warping path shown in each matrix is actually equal

to CDTW (A, Â) defined in Section 4.3.3. Based on the DTW algorithm, the closer the

path to a diagonal line, the more similar two traces are, and therefore the higher the

quality of the simulation. Table 4.3 shows the similarity measure (S(A, Â)) results
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Figure 4.6: Dynamic time warping (DTW) results of synthetic agent traces compared
to real-world agent traces (ground truth).

Table 4.3: Similarity measure obtained from DTW for real-world agent traces and
synthetic agent traces. The average cost of the optimal warping path.

S(A, Â)

28 June—
1st

28 June—
2nd

4 July—1st
(agent 1)

4 July—1st
(agent 2)

4 July—2nd
(agent 1)

4 July—2nd
(agent 2)

78.77% 85.61% 86.54% 86.90% 79.87% 78.56%

Total similarity: µ = 82.70%, σ = 13.57%

for our testbed. In total, our agent model is able to replicate real-world agent traces

from our testbed with the accuracy of µ = 82.70% (σ = 13.57%). Considering the

fact that in the worst and best case scenarios, virtual agent would be 12.4 m and

0 m apart from the real agent, respectively. Our results indicate that, on average,

the difference between virtual agent and real agent location was 1.7 m.

4.4.3 Sensor Events Validation Results

Figures 4.7 and 4.8 compare real-world and synthetic motion sensor events and beacon

events, shown with blue and red dots, respectively. More red dots indicate that
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(a) 28 June—1st session results (b) 28 June—2st session results

(c) 4 July—1st session results (d) 4 July—2nd session results

Figure 4.7: Ground-truth sensor events (blue dots) versus synthetic (red dots) for
motion sensors only. Red dots are plotted slightly higher that the line of the particular
sensor to avoid occlusion.

synthetic sensors fired more throughout the 10 times of simulation trials. Ideally,

blue and red dots should align perfectly for each sensor. Nevertheless, there are

differences in the synthetic sensor events and real-world sensor events in both sensor

types, due to timestamp ambiguity, i.e. the synthetic sensors do not fire at the same

time as their real-world counterparts, but also due to the agents’ behavioral ambiguity,

i.e. synthetic agents, even when they execute the activity script of their real-world

counterparts, they may do so differently.

Take as an example motion sensor 8 from Figure 4.7. The sensor was placed above

a table where all of the kitchen appliances were placed. The sensor readings through-

out four sessions are slightly different from each other, indicating that there were

stochastic behaviors in real-world agents, e.g. grabbing cookware and utensils from
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(a) 28 June—1st session results (b) 28 June—2st session results

(c) 4 July—1st session results (d) 4 July—2nd session results

Figure 4.8: Ground-truth sensor events (blue dots) versus synthetic events (red dots)
for for beacons only. Red dots are plotted slightly higher that the line of the particular
sensor to avoid occlusion.

cabinet at the same time or separately, or toasting bread while at the same time

making scrambled eggs. Moreover, in the real world, motion sensors are sensitive to

motions within their coverage area (which is not considered in our sensor model),

which implies that if a participant walks within the coverage area underneath a mo-

tion sensor and stays still, the motion sensor only triggers when the participant was

walking and does not trigger when the participant was staying still (take as an ex-

ample sensor 8 from Figure 4.7a). Furthermore, beacons do not always send signal

strength proportional to their distance with a receiver; for example, beacons could

send ≥−70 dBm even when the receiver is farther than 1 m of proximity, or vice versa,

the sensors could send < −70 dbm when the receiver is within 1 m of proximity.
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Sensors’ Activation Sequence (SAS) Validity

For motion and beacon sensors, e ∈ {0, 1}, and ê ∈ {0, 1} are elements of matrices E ′

and Ê, respectively. By using these two matrices, Algorithm 2 can be executed for

various window sizes. For each sensor type, the algorithm calculates a matching list

M and accordingly, calculates RMSE, recall, precision, and superfluous ratio. We

repeat this procedure for all of our data sets and various window sizes. The results

of these metrics shown in Figure 4.9. In addition, we perform, separately, the same

analysis for beacon sensors shown in Figure 4.10.

Based on Figures 4.9 and 4.10, as we increase the window size, RMSE, recall,

and precision improve. It is safe to say that for large enough window sizes, these

metrics converge because Algorithm 2 has plenty of options to choose from in order

to create a matching list for a given sensors’ activation sequence. However, larger

window sizes results in higher superfluous ratio. For each window size, the precision

and recall scores are calculated for each label, i.e. sensor number, and calculated

their average score. Calculating precision for larger window sizes increases the chance

of finding more false positives, which results in scores lower than smaller window sizes.

Temporal Sensors’ Reading (TSR) Validity

Our methodology uses Algorithm 3 with input matrices E ′ and Ê for beacon and

motion sensors with different window sizes. For any calculated matching list, RMSE,

precision, and recall metrics are obtained for both sensor types, shown in Figures 4.12

and 4.13, respectively, for our testbed. The figures show the better performance of the

sensor model for larger window sizes. Notice that for both motion and beacon sensors

is that for large enough window sizes, sensors can be categorized into two groups in

terms of their slope in RMSE, precision, and recall. The first category, i.e. the

sensors with steeper behaviors than the other category, and eventually convergence,

are the sensors that the sensor model accurately simulates. Likewise, the second

category is the sensors that our sensor model fails to simulate.
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(a) RMSE value (b) recall value

(c) precision value (d) superfluous ratio

Figure 4.9: SAS analysis for motion sensors for different window sizes.

(a) RMSE value (b) recall value

(c) precision value (d) superfluous ratio

Figure 4.10: SAS analysis for beacon sensors for different window sizes.
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4.4.4 Discussion

Our methodology models space, agents, and ambient sensor behavior that produces

synthetic data set similar to real-world counterparts. The space model is a BIM

model, a standard format produced by several architectural tools that accurately

models the geometry of any intended indoor space. Our BIMSim
3D gets a BIM file,

renders it to a 3D model. Users are able to add/define affordance properties for

any object inside the model. Detailed geometry specifications of the model enables

modeling agents and sensors with high fine degree of granularity.

The agent model is capable of generating synthetic agent traces based on a scripted

sequence of activities, associated with daily objectives. Based on the results obtained

from DTW, we observe that the model replicated real-world agent traces. In order

to analyze the accuracy of the model, we obtain a “baseline model”, wherein for

each entry in real-world agent traces, we generate a random location. We obtain

20 “random agent traces” for each of the participants in our testbed (120 in total).

On average, the similarity measure (S(A, Â)) between real-world agent traces and

random agent traces is µ = 73.62% (σ = 47.68%). We assume the accuracy from

both baseline model and our agent model come from normal distributions, and cal-

culate paired t-test. By conventional criteria, the difference of the two distributions

is considered to be statistically significant (pvalue = 0.032). However, there are flaws

in interpreting the scripted activities into traces (behavioral ambiguity). There is a

semantic gap in deciding how to perform some activities, even though following the

daily objectives, e.g., one could debate how/where to perform specific activities like

changing clothes, using a broom, or cooking. This usually happens to abstract activ-

ities, as compared to straightforward activities like use toilet, or take shower, which

are activities unlikely to be performed differently every time, which would also cause

different duration for performing those activities. That is why we see sometimes a

lot of differences in Figure 4.6. These differences then adversely affect our sensor
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behavior modeling. Activities that the agent model fails to accurately model are:

make tea, cooking, cleanup dining room, cleanup kitchen, iron shirts. On the other

hand, activities that the agent model accurately models are: exercise, use toilet, take

shower, washing hands, eat at dining table, doing laundry, watch TV, work with

tablet. This analysis can be noted from Figure 4.6, 28 June—1st session, where at

the beginning the participant performed exercise activity inside a marked area in liv-

ing room. This is a straightforward activity because the participant stood on a spot

and followed simple instructions shown in television. However, as it can be seen from

all the figures of Figure 4.6, there are differences in the middle part of the figures.

This is when participants were asked to cook. The cooking activity involved several

actions, e.g., grab a pan, grab eggs, setup dining table, etc, which not only could

introduce doubtfulness to participants, but also these activities could be performed

differently every time by the participants. On the other hand, virtual agents followed

the scripts.

The sensor model replicates real-world sensors accurately for large enough (in min-

utes scale) timestamp granularity. This means that the time intervals in which syn-

thetic and real-world sensors were active should have similar distributions. Figure 4.11

shows the normalized frequency of activation duration for both synthetic and real-

world motion and beacon sensors. We can observe that the most frequent activation

duration in both sensor types is 6 s; and the frequency decreases for larger activation

durations. It is worth mentioning that real-world motion and beacon sensors decay

faster as activation duration increases; this is because real-world sensors might not

get triggered constantly for a long time.

Our sensor model generates synthetic sensor events based on the synthetic agent

traces. The validity of sensor model depends on the validity of the agent model,

meaning that we can only validate sensor behaviors when synthetic agent traces per-

fectly match real-world agent traces. An obvious example for this can be seen from

Figure 4.6—(28 June—2nd session), at 11:44:00 from x axis, where the path moved
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(a) synthetic and real-world motion sensors

(b) synthetic and real-world beacon sensors

Figure 4.11: Normalized frequency of sensors activation duration.

vertically from 11:49:00 to 11:59:00 from y axis. This is due to the fact that real-

world agent went to bathroom and used the toilet at 11:44:00, whereas the synthetic

agent did the same at 11:59:00, so DTW algorithm warped the time in order to match

the “use the toilet” activity in both traces. That is why we can see from Figure 4.7

that motion sensor number 13, which is placed on the top of toilet activated after

some delay. We can see from Figure 4.6 that there are differences, sometimes huge,

in synthetic and real-world traces (behavioral ambiguity). Based on this reason and

timestamp ambiguity, regardless of the huge differences, and our Smart Condo™ ap-

plication, we could choose window size equal to 7 min if we wish to mitigate the issues

to some extent. Therefore, we report in Tables 4.4 and 4.5 the performance of our

sensor model in terms of SAS and in Table 4.6 the performance of the model in terms

of TSR.

Table 4.4 shows that we had 1.44 m average error in activation sequence for mo-

124



Table 4.4: SAS analysis for motion sensors with W = 7 min.

Motion Sensors Activation Sequence

RMSE Precision Recall Superfluous ratio

1.44 σ = 0.25 0.81 σ = 0.007 0.82 σ = 0.009 0.40 σ = 0.002

Table 4.5: SAS analysis for beacon sensors with W = 7 min.

Beacon Sensors Activation Sequence

RMSE Precision Recall Superfluous ratio

3.18 σ = 0.38 0.83 σ = 0.02 0.60 σ = 0.006 0.63 σ = 0.0002

tion sensors, which is small in our application. In addition, the average superfluous

ratio is 0.4. However, for beacon sensors (Table 4.5), the error is as high as 3.18 m,

with average superfluous ratio equal to 0.63. This behavior, i.e. high RMSE value

and relatively low average superfluous ratio, means that beacon sensors had moder-

ately different activation sequences. The recall score for beacon sensors also confirm

this analysis. This might be due to two reasons: the noisy behavior of beacon sensors,

and/or the consequence of the −70 dBm threshold to 1 m distance.

In terms of TSR, Table 4.6 shows that in average we had 0.31 and 0.32 sensor

reading error (RMSE values for TSR) for motion and beacon sensors respectively

(since they are binary sensors, the maximum is 1.0 and the minimum is 0.0 and

baseline is 0.5). We should mention that the sensor model failed to model several

beacon sensors due to their erratic behavior, as a result, the utilization of beacon

sensors is discarded in this thesis. For example, in Figure ?? (28 June—1st Session)

in the Appendix, there are several beacon sensors with rapid decrease in RMSE value,

but others stay above 0.2 even with large window sizes. For this reason, we remove,

as outliers, sensor behaviors with RMSE > 0.8 in Table 4.6. Precision and recall

scores for both sensor types show high performance of our sensor model in modeling
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Table 4.6: TSR analysis for W = 7 min.

Session

Temporal Motion Sensor Readings Temporal Beacon Sensor Readings

RMSE Precision Recall RMSE Precision Recall Sensor
Outliers
Removed

28 June—1st 0.28
σ=0.14

0.77
σ=0.09

0.77
σ=0.09

0.23
σ=0.09

0.84
σ=0.04

0.84
σ=0.04

B1 B4 B9
B13 B17
B18 B20
B21 B22
B25

28 June—
2nd

0.25
σ=0.11

0.81
σ=0.07

0.81
σ=0.07

0.39
σ=0.09

0.74
σ=0.05

0.74
σ=0.05

B5 B13
B20

4 July—1st 0.36
σ=0.10

0.75
σ=0.07

0.75
σ=0.07

0.35
σ=0.06

0.80
σ=0.03

0.80
σ=0.03

B0 B22
B26

4 July—2nd 0.32
σ=0.08

0.80
σ=0.04

0.80
σ=0.04

0.30
σ=0.07

0.82
σ=0.03

0.82
σ=0.03

B0 B4 B5
B7 B9 B15
B16 B17
B20 B21
B23 B25
B27

Average 0.31
σ=0.11

0.78
σ=0.07

0.78
σ=0.07

0.32
σ=0.08

0.80
σ=0.03

0.80
σ=0.03

sensors in terms of TSR.

Our analysis shows if we assume that synthetic agent traces match real-world

agent traces perfectly (not having behavioral ambiguity), then our sensor model is

externally valid. However, we assumed that coverage area of sensors are circular.

Although this representation is a generalized definition for ambient sensors, and IS

sensors, e.g., pressure sensors, sensor model also should be capable of modeling other

sensor types like temperature sensors, CO2 sensors, or smart objects like wearable

technologies. Then the agent model could be further extended in order to generate

corresponding traces to cover more smart indoor space applications, e.g., fall detec-

tion, interaction scenarios for energy consumption analysis, etc.

We intend to resolve the behavioral ambiguity in the future, i.e. fill the seman-

tic gap in interpretation of performing activities from the perspectives of real and

artificial agents. One possible solution is to simply model agents with different char-

acteristics, e.g.movement and ability in performing activities. A more sophisticated
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approach is to train a generative model in order to produce realistic agent traces,

while allowing re-sequencing of actions to some extent.

We also intend to simulate actuators in SIMsis toolkit, in order to support simu-

lating wider range of smart indoor space applications.

4.5 Conclusions

Smart homes and buildings are a very active topic of research, with a variety of

applications, from ambient-assisted living, to telecare, to occupancy analysis for en-

ergy management, relying on sensor data to provide comfort and safety to the people

living and working in them. Key to the effectiveness of these applications is the

proper configuration of the sensors embedded in the space, but finding a satisfactory

configuration is labor-intensive, costly, and time consuming.

In this chapter, we described the SIMsis toolkit, a simulator for indoor smart

spaces, that makes the following important contributions to the state-of-the-art. First,

it incorporates a high-quality model of the space, relying on BIM in the IFC format,

the de-facto representation standard of building information models. IFC enables the

accurate specification of the space 3D geometry and the furnishings and objects in it.

SIMsis augments the IFC building model with specifications of the affordances of the

objects in the space, so that virtual agents, given a set of objectives, move through the

space and interact with the objects in it to accomplish their goals. Second, it includes

a sensor-modeling-and-simulation component that realistically models sensors based

on their type, location, and coverage area and simulates their event firing considering

an increasing level of noise in the periphery of their coverage area.

We argue that an informative comparison between a simulation and the corre-

sponding real-world activity should involve three dimensions of analysis.

1. Virtual agents should behave similarly to their real-world counterparts. SIMsis adopts

dynamic time warping (DTW) as a measure of how close the sequence of the
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virtual-agents basic actions are to those of the real agents.

2. As the agents move and act within the space, the simulated sensors deployed in

the space should behave (fire or not fire) as their real-world peers. The sensor

activation sequence (SAS) metric was conceived for this purpose.

3. Finally, the sensor events emitted by a simulated sensor and its real-world coun-

terpart over time should be similar. The temporal sensors’ reading (TSR) metric

captures this type of similarity.

We have evaluated the validity of SIMsis simulations by comparing the synthetic

traces it produced when configured with a model of the space, agent and sensors of a

real-world study we conducted in the Smart Condo™. Our results demonstrate that

SIMsis accurately simulates agents’ basic activities, i.e. moving, sitting, and stand-

ing close to objects to interact with them, but is not aware of abstract activities,

i.e. cooking or sweeping the floor. The sensor-simulation component performed well

in replicating the behavior of motion sensors but needs to be improved with respect

to simulating beacons.

Our results demonstrate the potential of our SIMsis toolkit, and the simulation

methodology it supports, for generating realistic agent and sensor-event traces to

support the development of SIS applications in smart buildings.

4.6 Appendix

Figure 4.12 and Figure 4.13 show TSR analysis of motion and beacon sensors, respec-

tively. One can see that for at most 7 minutes window size, almost all of the motion

sensors’ metrics reaches their best value. Nevertheless, several beacon sensors require

larger, sometimes impractically large (e.g. B27 in 28 June - 2nd Session), window

sizes.
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Figure 4.12: TSR analysis: (left column) RMSE value, (middle column) precision
score, and (right column) recall score of motion sensors (shown in different colors) for
different window sizes in each session.
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Figure 4.13: TSR analysis: (left column) RMSE value, (middle column) precision
score, and (right column) recall score of beacon sensors (shown in different colors) for
different window sizes in each session.
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Chapter 5

Simulation-based Sensor
Configuration Evaluation

In previous chapters, we showed that data-driven methods for evaluating sensor con-

figurations could assist SIS applications’ designers to make informed decisions. These

methods analyze the performance of SIS applications in terms of their ability to es-

timate high-level contextual information, such as occupants’ locations or activities.

On the other hand, we argued that the acquisition of the datasets is limited to

their availability, flexibility and quality, motivating the development of a realistic SIS

simulation methodology in Chapter 4.

Consequently, this chapter proposes a simulation-based component for evaluating

different sensor configurations. Our component uses SIMsis to generate synthetic

datasets and fits a classifier to detect occupants’ activities as contextual information.

This chapter proposes using Bayesian optimization capable of finding a high-quality

sensor configuration maximizing the ability to detect indoor activities. We show

in two testcases that our proposed approach offers sensor configurations that are

significantly better than the alternative methods in the literature.

This chapter focuses on R4 research question, specified in Section 1.2: A novel

simulation-driven sensor configuration optimization component for SIS applications,

considering the quality of detecting contextual information as the objective function.
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5.1 Introduction

Intelligent indoor environments are equipped with wired or wireless sensors, e.g. cam-

eras and motion sensors, to monitor activities, and physical and mental health of

occupants. The configuration of these sensors (number, type, location, etc.), could

affect the performance of applications that rely on the sensor data [114, 154]. For

example, an optimized sensor configuration makes possible accurate activity recogni-

tion using the smallest number of sensors. But, due to the large size of the design

space and the high cost of evaluating each configuration under normal occupancy

conditions, finding the best sensor configuration via exhaustive search is prohibitive

in practical applications.

Many efforts have been made to date to reduce the time complexity of finding

a sensor configuration that includes a small number of sensors and satisfies various

requirements. Specifically, several studies have focused on maximizing the area cov-

ered by the sensors [44, 58]. The main limitations of these approaches are that they

assume all areas of the building are equally important and do not incorporate the

activity recognition accuracy to identify the best sensor configuration. In the real

world, some building spaces are rarely occupied, implying that covering the active

regions is more important for activity recognition.

Another approach is to maximize sensor coverage while prioritizing the areas of

interest in the building. To this end, several studies have taken advantage of contex-

tual information about the building and its floor plan to obtain a set of points that

might represent the location of occupants, and placed sensors such that these points

are maximally covered [16, 76, 147]. But, it is generally assumed that all these points

have the same importance, which could result in the misidentification of critical,

yet rare human activities, such as bathing, in an aged-care monitoring application.

Building upon this approach, the optimal configuration of omnidirectional motion

sensors that are attached to the ceiling is found in [139] by maximizing the accuracy
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of an activity recognition model while minimizing the number of deployed sensors,

given the occupants’ activities and trajectories. This approach requires collecting real

data about activities and movement trajectories, which is expensive and challenging.

Moreover, the evaluation of sensor configurations will be inaccurate when some ac-

tivities are not present in the real-world dataset. We believe this problem can be

addressed by generating realistic, synthetic traces. To simulate occupant activities in

an arbitrary indoor environment and store the corresponding sensor readings, we need

a high-fidelity simulation component that models the indoor environment, occupant

presence and actions, and sensor readings.

The most notable techniques adopted in the related work to configure sensors

in an indoor environment are greedy and evolutionary algorithms, in particular the

genetic algorithm (GA) [139, 152, 158, 159, 149, 84]. In other domains, similar

greedy and heuristic search-based methods have been proposed to find the optimal

sensor configuration [64, 156, 155, 74]. Despite being powerful, these methods might

not perform well in certain classes of problems because they merely rely on local

information the samples provide from a function being optimized [96]. In contrast, the

estimation of distribution algorithms (EDAs), e.g.Bayesian optimization (BO), use

local information to acquire global information about the function, i.e. a probabilistic

model (surrogate model) of the function. When this model accurately represents the

function, it helps the optimizer do a more effective exploration/exploitation. The

application of EDAs, notably BO, to optimizing the configuration of sensors in an

indoor environment with respect to the performance of an activity recognition model

is unexplored.

Figure 5.1 shows an example wherein GA and BO are applied to find the optimum

value (maximum) of a function f(x). As the figure shows, the GA utilizes the current

observations to identify the next query point (2.9), which is probably close to the best-

observed one (3). In contrast, the BO utilizes a probabilistic model of the function

to identify the next query point (1.8), which is close to the optimum point (2). This
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(a) (b)

Figure 5.1: Comparison of (a) search-based methods, e.g. Genetic Algorithm, versus
(b) Estimation of Distribution Algorithms (EDAs), e.g. Bayesian Optimization, in
finding the maximum value of a function f(x).

example shows that, when deploying a reasonable exploration/exploitation strategy,

a probabilistic model of the function can better guide the optimizer.

This chapter presents a component based on Bayesian optimization and building

simulation for efficient identification of a motion sensor configuration that better

supports accurate activity recognition in an aged-care facility. To generate synthetic

data representing different activities, we use a high-fidelity simulator developed in [54].

We show empirically that BO outperforms GA and greedy in two test buildings, which

implies that EDAs are more appropriate than heuristic search-based methods in this

particular problem. More specifically, our result indicates that the surrogate model of

the objective function contains useful information in the context of intelligent indoor

environments. Our contributions are threefold:

1. We cast the problem of configuring motion sensors in an indoor environment as

a Bayesian optimization problem,

2. We propose a simulation-based assessment and optimization component that

allows for using synthetic activities and movement trajectories, instead of real-

world traces that are difficult to collect, and

3. We show the efficacy of the proposed methodology in finding different sensor

configurations in two apartment buildings
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5.2 Related Work

5.2.1 Manual Approach

A handful of studies propose quick intelligent indoor environments prototyping com-

ponents, via simulation, for manual sensor configuration optimization [55, 150, 160,

31]. The main goal of these studies is to offer useful evaluation metrics based on the

applications that these components support. The combination of the metrics and

simulation environments provides inexpensive, repeatable and rapid prototyping of

SIS applications. An example of these components is the work presented by Zhan

and Haddadi [160], a component to evaluate sensor configuration for accurately iden-

tifying individuals in multi-occupancy scenarios. The component generates several

synthetic occupants’ location traces using real-world sensor readings. Then, the traces

are used to simulate temporal sensor readings data of a specific sensor configuration.

Each sensor reading is assigned to the occupant’s ID whose location is closer to the

location of that sensor than other occupants. The authors identified critical metrics

for sensor configuration optimization, i.e. identification annotation accuracy, indi-

vidual sensor’s effect on the accuracy, and a tradeoff between detection area and the

sensitivity of each sensor.

Nevertheless, decisions around sensor configuration depend on the SIS designers,

which are time-consuming, burdensome and subjective. Instead, it is shown in [139,

147], that an optimization algorithm is faster, effortless, and can automatically sug-

gest sensor configurations that are significantly more accurate than manual configu-

rations. This chapter proposes applying an optimization algorithm for finding high-

quality sensor configurations.

5.2.2 Area Coverage Approach

Fanti et al. [44] developed an integer linear programming (ILP) algorithm for maxi-

mizing area coverage of an indoor environment while minimizing the number of sensors
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used. The authors demonstrated that their method guarantees full sensing coverage

while maintaining a minimum number of sensors.

Gungor et al. [58] also utilized ILP for maximizing area coverage while considering

sensor failures and minimizing the number of sensors used. Their algorithm produces

sensor configurations that each point in the projected 2D grid on the indoor envi-

ronment layout gets covered by at least one sensor; hence more robustness to sensor

failures.

The area coverage approaches assume that all points in the grid have the same level

of importance. Therefore, in their analysis, covering unimportant areas contributes

equally to essential areas. In contrast, our methodology is based on a targeted cov-

erage approach in which it uses contextual information to prioritize specific areas.

5.2.3 Targeted Coverage Approach

Wu et al. [152] proposed a sensor placement optimization method using a multi-

objective genetic algorithm (NSGA-II) considering critical regions (as target points

with higher priority for coverage) of the indoor environment. The optimization aims

to maximize the target points coverage ratio while minimizing beacon sensors used.

The authors validated their method by estimating the location of the target points

and found that their algorithm produces sensor configurations that can accurately lo-

calize the critical regions. However, indicating critical regions requires expert knowl-

edge, which is burdensome, subjective and might not capture essential contextual

information, especially for designing new ageing in place settings because individuals’

conditions might differ.

Laidi et al. [76] proposed an algorithm based on the mean-shift clustering that gets

as input a set of target points (as training data) and denotes cluster means as possible

sensor placeholders. Then a greedy algorithm decides whether or not to place a mo-

tion sensor in the placeholders. They showed that the outcome sensor configuration

covers unseen target locations effectively. Nevertheless, the proposed method requires
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collecting real-world occupancy data, i.e. their location, which is impractical and

time-consuming for a given indoor environment. Moreover, the process requires in-

trusive sensors, e.g. cameras, and manual annotation of the collected data for the

intended indoor environment.

Vlasenko et al. [147] developed a greedy algorithm that consumes synthetic occu-

pancy data (their locations) and generates a motion sensor configuration that results

in more accurate indoor localization of the occupants compared to random and man-

ual designs. Their methodology uses synthetic data rather than real-world occupancy

data. The data generation process requires specifying pairs of coordinates as start

and destination locations. Then, it generates for each pair a path based on the A*

algorithm. However, the simulated data only simulates the walking activity. In con-

trast, real-world occupants’ data contain traces that occupants stay for some time in

a specific location to perform an activity. Moreover, although localizing occupants is

important for several intelligent indoor environment applications, its error tolerance

is usually high (around a meter error up to a room-level error are negligible). There-

fore, the more crucial metric for sensor configuration evaluation is the quality of an

activity recognition task. Studies show that accurately recognizing occupants’ activi-

ties is critical in most intelligent indoor environment applications, such as Activity of

Daily Living (ADL) recognition [75], and space usage understanding [123]. Besides,

understanding occupants’ activities automatically provides information about their

indoor location.

The most related research to ours is by Thomas et al. [139] which proposes a

methodology to optimize a motion sensor placement in detecting activities while

minimizing the number of sensors used. Their method uses a real-world dataset

to generate synthetic occupant locations, including temporal sensor readings and

occupant activities. Their methodology uses a Genetic Algorithm (GA) to propose

different sensor configurations. Then, for each configuration, first, a sensor simulator

uses the synthetic occupant’s locations and generates synthetic sensor readings; Then,
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an activity recognition model is trained and tested using the synthetic sensor readings

and real-world occupant’s activities. They showed that the GA algorithm could find a

sensor configuration significantly more accurately than random, uniform and manual

placements and the Hill-Climbing algorithm. Nevertheless, The synthetic dataset

generation is driven by real-world sensor readings, and it assumes that the real sensors

are error-free.

This chapter proposes a component that uses a realistic simulation methodology

that generates synthetic occupants’ temporal trace, i.e. location and activity, and its

corresponding temporal motion sensors reading of an inputted sensor configuration,

without needing real-world data. Moreover, the component uses BO as an example of

EDAs to prove that the EDAs’ probabilistic model accurately estimates the quality of

different sensor configurations regarding an activity recognition’s performance. This

chapter aims to show that the probabilistic model provides global information that

guides the optimizer towards significantly better sensor configurations than GA and

greedy methods.

5.3 Methodology

We now present our simulation-driven motion sensor configuration component (de-

picted in Figure 5.2), which uses Bayesian optimization to find a configuration that

maximizes the recognition accuracy for activities of daily living (ADL). We treat the

simulation of the intelligent indoor environment as a black-box function that receives

a candidate sensor configuration and outputs a stochastic, noisy observation. The pro-

posed component consists of three main modules: 1) the simulator of smart indoor

spaces (SIMsis ) developed in [54], 2) an activity classifier, and 3) a sensor configu-

ration optimizer. The SIMsis gets as input ADL plans of N occupants, the space

model of the indoor environment, and a candidate sensor configuration. Given this

input, it produces a synthetic dataset that consists of sensor readings (i.e. time-series

generated by the sensors) and corresponding activities for each of the N occupants.
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The activity classifier module trains a recognition model for ADL using part of this

dataset, and evaluates its performance on the test sets. Finally, the sensor configura-

tion optimization module iteratively uses the model performance to propose the next

candidate sensor configuration that optimizes it.

5.3.1 Simulator of Smart Indoor Spaces

The SIMsis is a simulator of smart indoor spaces introduced in [54]. It has been

shown that SIMsis can realistically model occupant’s behavior and motion sensor

readings. It gets as input a space model, daily plans of N occupants, and a candidate

sensor configuration. The space model is the specifications of an indoor environ-

ment using Industry Foundation Classes (IFC) for Building Information Modeling

(BIM) [13]. The IFC data model is an ISO International Standard, and an open

architectural and building data description specification. The space model also in-

cludes object affordances, e.g.a couch affords the ability to be sat on. The daily plan

of occupants models regular ADL, such as sleeping and cooking. Each sample from

the model generates a slightly different daily plan in terms of ADL order and dura-

tion. Finally, the candidate sensor configuration describes the number and locations

of motion sensors. The SIMsis generates a synthetic dataset consisting of sensor

reading and their corresponding activity for each of the N occupants in the following

Equation 5.1:

D = {{Rt
i, A

t
i}Tt=1}Ni=1 (5.1)

where Rt
i and At

i denote the i-th sensors reading (a vector of size D where D is the

number of sensors used in the environment) and occupant’s activity, respectively, at

time t. An ideal motion sensor configuration1 should result in a dataset where each

activity has a distinct enough pattern in the space of sensor readings so that an

activity recognition model can easily recognize it.

1We assume the motion sensors are omnidirectional and attached to the ceiling, so the sensor
configuration reduces to the location of each sensor in a 2D space.
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Figure 5.2: Sensor configuration optimization for accurate activity recognition via
simulation.

5.3.2 Activity Classifier

The activity classifier gets as input the dataset D and applies the leave-one-out cross-

validation method. Specifically, it considers the data that pertains to one occupant as

the test set and the data of the remaining occupants as the train set. This process is

repeated for every occupant to obtain different test sets, and the average performance

is reported. We borrow the activity recognition system from the ‘Center of Advanced

Studies In Adaptive Systems’ (CASAS) [32], which uses a Random Forest machine

learning model (this recognition system is used by [139] too). For each test set, the

activity classifier calculates the macro-averaged F1-score of the ADL and then outputs

the arithmetic mean of the F1-scores (given below) as the model performance:

F 1 =
1

N
ΣN

i=1

1

M
ΣM

j=1

tpj
tpj +

1
2
(fpj + fnj)

(5.2)

Here N is the number of occupants, M is the number of activities, and tpj, fpj, and

fnj are true positive, false positive and false negative of the j -th activity, respectively.

Notice that F 1 is sensitive to both false negative and false positive. Therefore, this is a

good performance measure, because both of these factors are important in the activity

recognition task, and in particular for elderly monitoring systems where failing to alert

the caregiver or issuing a false alarm could have dire consequences. Additionally, there
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are rare and short, but precarious activities, such as taking a shower, that should

be deemed as important as other activities when evaluating the activity recognition

model. That is why we calculate the macro-averaged F1-score over the M activities

in Equation 5.2.

5.3.3 Optimization Algorithm

The sensor configuration optimization module receives an observation, which is the

performance of the activity recognition model expressed in (5.2), and iteratively pro-

poses a candidate sensor configuration to optimize this performance measure. This

optimization can be performed using the Bayesian approach (our proposed method

described below), the genetic algorithm which is a popular evolutionary algorithm

adopted in the literature [139], or a widely used greedy algorithm [74].

Problem Setup

The sensor configuration optimization module requires a representation of possible

sensor locations to suggest the location of sensors effectively. The representation

should maintain a specific granularity level to ensure the effectiveness of the opti-

mization process. This is because high granularity increases the size of search space

and its complexity, while using low granularity might result in finding a suboptimal

sensor configuration. Most related work, including [139], creates a 2D grid (graph)

based on the given floor plan, wherein each node indicates a possible sensor location

in the environment. Similarly, we define a matrix EH,W to compactly represent the

possible sensor locations:

EH,W =

⎡⎢⎢⎢⎢⎢⎢⎣
e1,1 e1,2 · · · e1,W

e2,1 e2,2 · · · e2,W
...

...
. . .

...

eH,1 eH,2 · · · eH,W

⎤⎥⎥⎥⎥⎥⎥⎦ (5.3)

wherein each element ei,j∈{0, 1}, with 0<i≤H and 0<j≤W , indicates whether there

is a sensor at location (i, j). Note that H=⌈h/ϵ⌉−1 and W=⌈w/ϵ⌉−1 where h and
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w are the height and width of the indoor environment, respectively, and ϵ is the

granularity in the 2D space, i.e. the spacing between consecutive rows and columns.

Higher ϵ values indicate lower granularity, hence lower computation overhead.

Baseline 1: Genetic Algorithm

Our first baseline is the genetic algorithm (GA) used in [139] to find an optimal motion

sensor configuration that enables accurate activity recognition. In this setting, each of

the GA’s chromosomes is a vectorized version of an instance of EH,W . The GA starts

with a population of 10 random sensor configurations and feeds each configuration to

the black-box function shown in Figure 5.2 to obtain a fitness value. The fitness value

of each chromosome is penalized by the number of sensors deployed (number of 1s in

the chromosome) to prevent the algorithm from placing too many sensors (a budget

constraint). The best 10% of the chromosomes survive to be the next generation. The

GA then performs crossover and mutation to populate the next generation. First, the

GA randomly chooses a pair of chromosomes from the best 20% of the population

in the crossover function. Then, it generates two distinct random indices, excluding

the first and last indices, to slice each chromosome into three sections and swap

their middle sections, generating two new offspring. Finally, it mutates each newly

generated offspring by randomly choosing a possible sensor location and flipping its

value with a 0.005 probability.

Baseline 2: Greedy Algorithm

The greedy algorithm is a widely used heuristic search-based method for optimizing

a black-box function [74, 153, 147]. We apply natural greedy sensor configuration

choices, wherein the algorithm iteratively makes the best decision to optimize the en-

tire problem. It starts with a configuration that contains no sensors, and iteratively

adds a sensor to this configuration by finding the one-sensor configuration that yields

the highest F1 score among the W×H possible configurations. The process continues
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until it places the given number of sensors or the maximum number of black-box func-

tion queries is reached. Note the greedy algorithm may not find the global optimum

as it is an iterative method and in each iteration it overlooks that black-box function

observations are inherently noisy.

Bayesian Optimization

The Bayesian Optimization (BO) is a sequential search strategy for optimizing a

black-box function. In our component, the goal of the Bayesian optimization is to

maximize the black-box function f (depicted in Figure 5.2):

max
c∈S

f(c) (5.4)

where S is the D-dimensional space of sensor configurations representing all possible

configurations with D sensors, and c = {{x×ϵ, y×ϵ}Dd=1 | 0≤x≤W, 0≤y≤H} repre-

sents a sensor configuration from this space. The BO method assumes that observa-

tions of the function f (Equation 5.2) are the results of a stochastic process indepen-

dent across different observations. There are two sources of noise in our black-box

function: 1) SIMsis : although being high fidelity, it is a simplified model of the

actual indoor environment. Thus, it does not necessarily capture all dynamics and

uncertainties that exist in the real world; 2) the activity classifier: the random forest

fits several decision tree classifiers on different randomly generated sub-samples of the

given dataset. Thus, each execution might yield a slightly different performance on

the dataset. BO approximates f using a probabilistic surrogate model, denoted f̂ ,

given a set of observations Z. The surrogate model is defined as:

f̂(F̂
1
|c) = p(f |Z) (5.5)

Equation 5.5 shows that given an input configuration c, f̂ estimates F 1 (Equation 5.2),

denoted as F 1̂. We use the Probabilistic Random Forest (PRF) as the BO’s surrogate

model. At each iteration n, the surrogate model is indeed a prior over f given
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observations Z1:n={(ci, F 1
i )

n
i=1} (accumulated observations from the first iteration to

the n-th iteration).

The surrogate model, f̂ , is used to construct an acquisition function α(c; f̂), which

decides the next candidate sensor configuration to evaluate in iteration n+1, denoted

as cn+1. We use the state-of-the-art expected improvement (EI) acquisition func-

tion [49]:

α(c; f̂) =

∫︂ ∞

F 1∗
max(F̂

1
− F 1∗, 0)f̂(F̂

1
|c) dF̂

1
(5.6)

where F 1∗ is the best observed F 1 so far, i.e. F 1∗=max{F 1
1 , ..., F

1
n}. The acquisition

function can be used to find potentially better sensor configurations. By maximiz-

ing (5.6), we find:

cn+1 = argmax
c

α(c; f̂) (5.7)

which has the largest expected improvement. We remark that there are several alter-

natives to EI, such as probability of improvement, entropy search, and upper confi-

dence bound [49]. However, comparing the performance of these acquisition functions

is outside the scope of this thesis, which primarily focuses on investigating the efficacy

of the surrogate model for optimizing the sensor configuration in an indoor intelligent

environment.

After evaluating cn+1, the corresponding observation, zn+1=(cn+1, F
1
n+1), is ap-

pended to the past observations: Z1:n+1={Z1:n, zn+1}. Next, Z1:n+1 is utilized to up-

date the surrogate model f̂ , resulting in the posterior surrogate model which better

approximates f . The posterior surrogate model is then used as a prior for obtaining

cn+2. The process continues for 1000 iterations and the best sensor configuration

found is reported. Algorithm 4 summarizes the BO algorithm used in this chapter.

We set the initial configuration (c1) randomly and implement Algorithm 4 using the

BO package from [82].

144



Algorithm 4 Bayesian Optimization Algorithm
Inputs: Number of sensors D, Granularity ϵ, Environment’s width w, Environment’s height h, and
black-box function f
Output: An optimal sensor configuration c∗

1: Initialize c1 = {{x ∼ U([0,
⌊︁
w
ϵ

⌋︁
]), y ∼ U([0,

⌊︁
h
ϵ

⌋︁
])}Dd=0}.

2: Initialize F 1∗ = 0
3: Let Z1:1 = {(c1, f(c1))}.
4: Let f̂(F 1̂|c) = p(f |Z1:1).
5: for i = 2 : n do
6: ci = argmaxc α(c; f̂)
7: F 1

i = f(ci)
8: Z1:i = {Z1:i−1, (ci, F

1
i )}

9: Update f̂ : f̂(F 1̂|c) = p(f |Z1:i)
10: (c∗, F 1∗) = argmaxF 1{Z1:i}
11: end for
12: return c∗

5.4 Algorithm Evaluation

5.4.1 Case Study

We use two testbeds for our case study: an 8×8 (m2) fully-furnished one-bedroom

suite (denoted as T1) and a 8×5.2 (m2) fully-furnished studio suite (denoted as T2)

from the Lifestyle Options Retirement Communities [83]. The suites are designated

for older adults needing independent living, assisted living, or memory care. We

choose these suites as our testbeds because of their fundamental differences, such as

layout and size, which could lead to various traces. The T2 causes different movement

trajectories in some areas, such as the kitchen, because the entryway and bathroom

are accessible only from the kitchen. The T1 causes slightly scattered movement tra-

jectories and has no traces on the balcony. Therefore, they present unique challenges.

Since there is no IFC file available for our case study, we use Autodesk Revit® [12]

and BIMobject repository [19] to develop a digital twin of the indoor spaces in IFC

format. Figure 5.3 shows the space models of our case study.

The case study includes five (simulated) occupants performing various ADLs sep-

arately (hence N=5 in Equation 5.1). Table 5.1 shows an ordered list of 23 detailed

activities the occupants perform in 196 minutes in total (in Equation 5.1, A is the list

of detailed activities and T=196×60
3

because the data gets collected every 3 second).
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(a) Testbed 1 (T1). (b) Testbed 2 (T2).

Figure 5.3: The floor plan/space model of the two apartments: (left) an 8 × 8 (m2)
one-bedroom suite; (right) a 8× 5.2 (m2) studio.

Performing ADLs and few detailed activities (denoted by the same superscript in

Table 5.1) can be swapped, giving slightly different activity plans.

5.4.2 Results

We compare motion sensor configurations found by using BO, GA, and greedy in our

case study. We run each algorithm 5 times for each value of ϵ∈{0.25m, 0.5m, 1.0m}.

Given the range of motion sensors in the simulator (a circle with radius of 1 meter),

these ϵ values are reasonable because they allow to potentially have some overlap

between the areas covered by multiple sensors and maintain a clear line of sight

despite the obstacles that exist in the environment. For greedy and BO, we repeat

the process after setting the total number of sensors to 5, 7, 9, 11, 13, and 15. We

cannot control the number of sensors placed by GA. Each algorithm can query the

black-box function at most 1000 times. Tables 5.2 and 5.3 show the performance

(Equation 5.2) of our method and the baselines in T1 and T2, respectively. In both

T1 and T2, the greedy algorithm mostly exhausts the 1000 black-box function queries

for ϵ=0.25 and 0.5. For example, in T1 when ϵ=0.5, 1115 function queries are needed

to place 5 sensors, with this breakdown: 225, 224, 223, 222, 221 queries for putting
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(a) ϵ = 0.25 (T1) (b) ϵ = 0.5 (T1) (c) ϵ = 1 (T1)

(d) ϵ = 0.25 (T2) (e) ϵ = 0.5 (T2) (f) ϵ = 1 (T2)

Figure 5.4: Average of the best performance of GA, greedy, and BO with different
no. sensors across black-box function queries.

the 1st, 2nd, 3rd, 4th, and 5th sensor, respectively.

It can be readily seen that regardless of the number of sensors, BO significantly

outperforms GA and greedy for all ϵ values2, except the pairs that have the same

superscript in Table 5.3. Notice that the best configuration found by BO for each ϵ

value (printed in bold), significantly outperforms our baselines. Moreover, there are

no significant changes in the performance of BO using different numbers of sensors.

It achieves a good performance with as few as 7 sensors in T1.

2For each ϵ value, a two-tailed t-test is used to decide if there exists a significant difference
(p<0.05) between the performance means of GA, greedy and BO for different amounts of sensors.
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Table 5.1: Occupants’ ADLs in our case study. ADLs and a few detailed activities
with the same superscript (a or b) can be shuffled.

ADL Sequence of Detailed Activities (minutes)

Bathing Undress (5), Take a shower (15), Dress (6)

Hygiene Use toilet (3), Wash hands (3)

Dining routine Make tea (10), Grab ingredients (2), Fry eggs (10), Toast breads
(5), Grab utensils (1), Eat (10), Take medicine (2), Wipe dining
tablea (5), Wash dishesa (3), Clean kitchena (5)

Brooming Grab the broom from storage (2), Broom (7), Return the broom
(2)

Others Sit and work with tabletb (30), Exerciseb (30), Watch TVb (15),
Ironb (5), Sleepb (20)

Figure 5.4 shows the average of the best obtained performance (among the 5 runs)

after each black-box function query by GA, greedy, and BO, for different numbers of

sensors and ϵ values in T1 and T2. It can be seen that after about 300 queries, BO’s

performance using any number of sensors is better than GA and greedy even after 1000

queries. The only exceptions are the greedy algorithm with 9, 11, and 15 sensors in T2

with ϵ=1, where the performance is slightly better than BO with 5 and 7 sensors. This

finding suggests that BO explores the search space more effectively. To corroborate

this finding, we compare the F 1 of each function query (a measure of the query

quality) from GA, greedy, and BO, and then examine sensor locations of the best

sensor configurations found by these methods. Figure 5.5 shows the best optimization

runs (out of the 5 runs) by GA, greedy with 15 sensors for ϵ=1, and BO with 9, 7, and

9 sensors for ϵ=0.25, ϵ=0.5, and ϵ=1 respectively in T1 (Figure 5.5a–5.5c). In case of

T2, the figure shows the same result for GA, greedy with 7, and 11 sensors for ϵ=0.5

and ϵ=1 respectively, and BO with 11, 11, and 13 sensors for ϵ=0.25, ϵ=0.5, ϵ=1

respectively (Figure 5.5d–5.5f). Every observation after BO’s query to the function

is plotted as a dot and the best obtained performance of each of the three methods is

plotted using dashed and solid line segments. Observe that for any ϵ value except for
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Table 5.2: The performance of GA, Greedy, and BO in terms of the macro-averaged
F1-score (Equation 5.2) in T1. A dash is used when a sensor configuration is not
found using 1000 queries.

Avg. F 1 (± one standard deviation)

Method Sensors # ϵ=0.25(m) ϵ=0.5(m) ϵ=1.0(m)

Baseline 1

GA

N/A

56.7±1.0

average no.

sensors:20.4

59.7±0.4

average no.

sensors:13.2

54.5±1.3

average no.

sensors:11.4

Baseline 2

Greedy

5 — — 53.3±6.9

7 — — 53.9±0.9

9 — — 57.3±3.1

11 — — 56.5±0.8

13 — — 58.6±2.8

15 — — 59.7±3.0

BO

5 73.8±0.8 72.4±1.0 68.4±4.4

7 75.2±0.9 76.5±1.9 72.8±1.2

9 77.8±1.5 73.4±1.6 75.3±1.1

11 75.0±1.8 74.1±1.5 71.3±1.3

13 74.8±1.9 75.2±0.9 73.2±1.9

15 76.1±0.9 75.3±1.4 70.7±0.9

ϵ = 1 in T2 (Figure 5.5f), most of the BO’s observations yield better performance than

the best observations of GA and greedy. Specifically, in Figures 5.5a to 5.5c, 77.9%,

79.4%, 81.8%, 98.8%, 99.8% and 99.8% of BO’s observations are higher than GA’s

best performance. Similarly, in Figures 5.5c, 5.5e, and 5.5f, 62.5%, 51.8%, and 14.2%

of BO’s observations are better than greedy’s best performance. The performance

of greedy is acceptable in Figure 5.5f because the search space is small. Thus, the

chance of reaching the global optimum point is higher as there are fewer options to

explore.

Figure 5.6 shows sensor locations for the best sensor configuration found for every ϵ

value in the two testbeds. The heatmap overlaid on the floor plan shows the occupant
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Table 5.3: The performance of GA, Greedy, and BO in terms of the macro-averaged
F1-score (Equation 5.2) in T2. There is no significant difference between results that
have the same superscript. A dash is used when a sensor configuration is not found
using 1000 queries.

Avg. F 1 (± one standard deviation)

Method Sensors # ϵ=0.25(m) ϵ=0.5(m) ϵ=1.0(m)

Baseline 1

GA

N/A

43.3±0.9

average no.

sensors:17.4

42.1±1.4

average no.

sensors:10.6

42.5±0.7

average no.

sensors:10.0

Baseline 2

Greedy

5 — 59.0±2.0 56.5±3.8

7 — 59.8±2.7 59.5±1.7a

9 — — 62.3±1.7b,d

11 — — 63.7±1.7e,f

13 — — 56.5±1.2

15 — — 61.9±0.5c

BO

5 65.7±0.9 64.9±0.6 61.0±0.8a,b,c

7 67.0±0.8 66.6±0.6 63.4±0.4d,e

9 69.1±0.5 67.8±1.0 64.5±0.7f

11 73.7±2.1 68.4±0.9 65.9±1.1

13 68.4±0.6 67.7±1.0 67.4±1.1

15 68.4±1.4 67.3±0.8 67.4±0.9

locations (yellow indicates higher occupancy than red and white; white indicates little

to no occupancy). Notice that all methods place sensors in highly occupied locations,

such as the kitchen and dining room. In the other areas, BO tends to put motion

sensors in more appropriate locations. In particular, in T1, BO always places one

or more sensors above the toilet and/or bathroom sink, and pays more attention to

the infrequent activities that happen in the storage room than the two baselines.

Interestingly, both GA and greedy place sensors in areas such as the balcony and

entryway, where no activities were performed. In T2, BO is the only method that

places at least one sensor in the living room for all ϵ values.
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(a) ϵ = 0.25 (T1) (b) ϵ = 0.5 (T1) (c) ϵ = 1 (T1)

(d) ϵ = 0.25 (T2) (e) ϵ = 0.5 (T2) (f) ϵ = 1 (T2)

Figure 5.5: Best performed GA, greedy and BO with different no. sensors on T1 and
T2 across black-box function queries.

5.5 Scalability and Modularity Tests

Scalability is a critical factor in the design of any component or system. It refers

to the ability of a system to handle an increasing workload without compromising

performance, quality, or user experience. For our sensor configuration optimization

component, scalability is crucial as it determines the range of applications the com-

ponent can support. Scalability should be explored in terms of different sensor types,

the number of activities, the number of occupants, and the size of the indoor en-

vironment. Our component’s primary application is for automatic ageing-in-place

systems, which involve monitoring the daily living activities of an older individual in
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(a) ϵ = 0.25 (T1) (b) ϵ = 0.5 (T1) (c) ϵ = 1 (T1)

(d) ϵ = 0.25 (T2) (e) ϵ = 0.5 (T2) (f) ϵ = 1 (T2)

Figure 5.6: Motion sensor configurations found by GA, greedy, and BO for different
ϵ values in T1 and T2. The coincident sensors in the BO sensor configuration are
shown with a small offset.

a residential indoor environment. Therefore, the scalability of our component mainly

concerns the various sensor types and their quantity.

A component is modular, if it is built with separate, self-contained modules that

can be easily combined, modified, or replaced without affecting the performance of

other modules and the overall performance of the component.

In this section, we conduct a thorough investigation into the scalability and modu-

larity of our component. Specifically, we evaluate the quality of sensor configurations

given different sensor types and an increasing number of sensors. We also demonstrate

that our component is modular by interchanging its important modules.

We use the 8×8(m2) fully-furnished one-bedroom suite (T1 in Figure 5.3) as well
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Table 5.4: The performance of our component with BO in terms of the macro-averaged
F1-Score (Equation 5.2) in T1 using 7 motion sensors and varying LS sensors (type
and number).

IS Sensor #

Avg. F 1 (± one standard deviation)

IS Sensors Type:

Pressure Sensor

IS Sensors Types:

Pressure Sensor

Electricity Sensor

IS Sensors Types:

Pressure Sensor

Electricity Sensor

Accelerometer

1 74.9±0.5 73.2±1.2 76.9±1.2

2 74.8±1.4 72.5±2.6 78.5±1.2

3 74.3±1.3 74.0±0.7 79.1±1.9

4 73.5±1.8 73.1±2.6 79.0±2.1

5 74.0±1.2 74.2±1.8 81.7±0.7

6 74.9±1.3 73.2±1.3 80.2±2.3

7 74.6±1.7 76.3±1.6 81.5±1.1

8 73.4±2.0 74.7±0.8 82.8±1.3

9 77.3±1.2 74.0±1.4 82.2±0.9

10 74.3±0.9 75.8±1.1 82.7±1.7

as including five (simulated) occupants performing ADLs (Table 5.1) defined in this

chapter.

5.5.1 Scalability Test

We run the optimization for different configurations of IS sensor types and IS sensor

numbers combined with 7 motion sensors as LS sensors and set ϵ= = 0.5. Specifically,

we evaluate the scalability by incrementally allowing three IS sensor types, i.e. pres-

sure sensor, electricity sensor, and accelerometer, to consider by the optimizer in the

sensor configuration optimization process. Finally, we repeat the experiment after

setting the total number of IS sensors to 1, 2, 3, ..., 10.

Table 5.4 shows the performance of our component with BO in terms of macro-

averaged F1-Score in T1. Regarding the sensor’s scalability, it can be seen that our
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component finds accurate sensor configurations even given high-dimensional sensor

configuration search space, e.g. 7 motion sensors (LS sensors) and 10 pressure sen-

sors (as IS sensors). Furthermore, for more IS sensor types, our component is not

only scalable but also finds more accurate sensor configurations, such as F1-Score of

82.7±1.7 with 7 motion sensors (as LS sensors) and 10 pressure/electricity/accelerom-

eter sensors (as IS sensors).

Figure 5.7 shows the average of the best-obtained performance (among the 5 runs)

after each black-box function query by BO when considering pressure sensor only 5.7a,

pressure sensor and electricity sensor 5.7b, and pressure sensor, electricity sensor, and

accelerometer 5.7c. It can be seen that our component converges with any given IS

sensor number/type; hence, scalable. Interestingly, the component’s performance

does not significantly change when considering pressure and electricity sensors in

comparison with pressure sensors only. However, when considering the accelerometer,

too, the performance increase substantially for any IS sensor number, implying that

accelerometer data is vital for activity recognition.

5.5.2 Modularity Test

We wish to emphasize that our component is not designed for a particular choice

of activity classifier. To show this, we have repeated the optimization process in

T1 for ϵ=1 using two different activity classifiers: gradient boosting and K-nearest

neighbour (KNN) with k=5. The GA, greedy with 15 sensors, and BO with 9 sensors

respectively yield the F 1 score of 56.1±2.1, 58.2±4.1 and 73.8±0.9 when using the

gradient boosting classifier, and the F 1 score of 49.3±1.6, 51.6±2.2 and 60.8±0.8

when using KNN. In both cases, the superior performance of BO remains statistically

significant.

Our component is not limited to a specific simulation methodology. To demonstrate

this, we have repeated the optimization process in T1 for ϵ=1 using the simulation

methodology from [139]. The GA, greedy with 15 sensors, and BO with 9 sensors
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(a) The performance of
our component considering
pressure sensor.

(b) The performance of
our component considering
pressure sensor, and elec-
tricity sensor.

(c) The performance of
our component considering
pressure sensor, electricity
sensor, and accelerometer.

Figure 5.7: Best performed BO with 7 motion sensors and different no. and types of
IS sensors on T1 across black-box function queries with ϵ=0.5.

respectively yield the F 1 score of 53.9±0.5, 60.5±1.1 and 72.9±0.6. This shows that

BO remains effective with a different simulation methodology.

5.6 Discussion

Our experiments confirm that the proposed component based on BO outperforms the

conventional methods for finding the best motion sensor configuration, resulting in

significantly more accurate activity recognition task. It acquires a surrogate model of

the given black-box function and updates it with new observations, allowing for more

effective sampling as the number of observations increases. Each query takes about

2 minutes, making exhaustive search impractical.

We argue that the surrogate model of the function is a sufficiently accurate rep-

resentation of the function. Further studies can be conducted using this surrogate

model to address other research questions, such as maximizing the robustness of sen-

sor configuration (some attention has been paid recently [57]). The robustness is
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defined as the average performance of the configurations that are relatively similar.

Hence, it can be interpreted as robustness to minor installation errors. To quantify

this, one can analyze the gradient of the surrogate model in the vicinity of a particular

configuration. The gradient is also useful for incorporating the sensors’ precision and

accuracy. Another direction is to apply transfer learning to the surrogate model to

use its knowledge in other environments.

To understand how changing the hyperparameters of GA affects the exploration/-

exploitation trade-off, we considered different choices in one case, i.e. ϵ=1 in T1. We

found that GA’s performance shows little sensitivity to the choice of hyperparame-

ters, and even in the best case it improves negligibly compared to the result presented

in Table 5.2.

5.7 Conclusion

Our experiments confirm that the proposed component based on BO outperforms the

conventional methods for finding the best motion sensor configuration, resulting in

significantly more accurate activity recognition tasks. It acquires a surrogate model

of the given black-box function. Then, it updates it with new observations, allowing

for more effective sampling as the number of observations increases. Each query takes

about 2 minutes, making exhaustive search impractical.

We argue that the surrogate model of the function is a sufficiently accurate rep-

resentation. Further studies can be conducted using this surrogate model to address

other research questions, such as maximizing the robustness of sensor configuration

(some attention has been paid recently [57]). The robustness is defined as the average

performance of relatively similar configurations. Hence, it can be interpreted as ro-

bustness to minor installation errors. To quantify this, one can analyze the gradient

of the surrogate model in the vicinity of a particular configuration. The gradient is

also useful for incorporating the sensors’ precision and accuracy. Another direction

is to apply transfer learning to the surrogate model to use its knowledge in other
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environments. To understand how changing the hyperparameters of GA affects the

exploration/exploitation tradeoff, we considered different choices in one case, i.e. ϵ=1

in T1. We found that GA’s performance shows little sensitivity to the choice of hyper-

parameters, and even in the best case, it improves negligibly compared to the result

presented in Table 5.2.

The main limitation of BO is that it might place coincident sensors, which can

be prevented by incorporating some constraints, which is a future work direction.

The results show that the optimal configuration of one type of sensor is not deemed

intrusive and is commonly used for activity detection in ageing-in-place settings. We

plan to extend our method to configure other sensor types e.g.pressure sensors.
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Chapter 6

Conclusion and Future Work

This thesis culminates with drawing the central conclusions from the previous chap-

ters. To this end, we first recap the key contributions made towards building a

simulation-driven sensor configuration evaluation framework, our primary goal in this

thesis. Then, we take stock of the findings and contributions to discuss potential fu-

ture research directions.

6.1 Summary of Contributions

The present thesis set out to alleviate the problem of optimizing sensor configuration

for Smart Indoor Spaces (SIS) applications, capable of detecting contextual informa-

tion needed for the applications. We argued that achieving this goal demands the

following four key requirements, stated in Section 1.2:

• (R1) the ability to derive contextual information from raw sensor readings in

SIS applications,

• (R2) evaluating different sensor configurations using synthetic datasets,

• (R3) a SIS simulation methodology capable of modelling various scenarios, and

• (R4) a simulation-driven optimization framework for finding optimal sensor con-

figurations.
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This section discusses the contributions of my research and their connections to the

stated requirements. To begin with, we prototyped two proof of concepts in Chap-

ter 2. The first prototype featured two data-driven models, namely particle filters

and dynamic neural networks, employed for predicting the number of occupants as

contextual information. The methods utilized raw occupancy-indicative sensor read-

ings as input and outputted the predictive number of occupants in separate rooms

of two buildings, serving as our testbeds. The underlying assumption was that the

target contextual information always presents distinct enough patterns in the space of

sensor readings so that a prediction model can easily recognize it. The first prototype

demonstrated that high-quality sensor readings contain specific contextual informa-

tion and that data-driven models can recognize them accurately, fulfilling the first

requirement (R1).

In the second prototype, we proposed utilizing the predicted contextual information

to assist SIS designers effortlessly evaluating different sensor configuration deploy-

ments. The prototype leveraged an off-the-shelf SIS simulation methodology instead

of expensive-to-obtain real-world datasets. The simulator allows obtaining datasets

needed by data-driven models effortlessly and quickly, which are reproducible and

readily available for any floor plan. This prototype showed that the accuracy of a

localization algorithm could be employed to analyze the performance of an underly-

ing sensor configuration in different areas of the indoor space, fulfilling the second

requirement (R2).

In Chapter 3, we proceeded to work on a crucial component of our framework,

namely, a simulation methodology. First, we proposed a unified taxonomy of simu-

lation methodologies for SIS applications and conducted a systematic review of the

available methodologies. Then, we applied a hierarchical clustering method based

on our proposed taxonomy to divide the methodologies into meaningful groups. We

demonstrated that the available methodologies lack the generalization feature and

high-fidelity in modeling occupants and sensors required for effective simulation of

159



SIS applications.

In Chapter 4, we proposed a high-fidelity simulation methodology capable of mod-

elling any indoor space, thus generalizable. Our methodology, i.e. SIMsis toolkit,

takes in as input any intended indoor space representation in Industry Foundation

Classes (IFC) for Building Information Modeling (BIM) format 1. It models occu-

pants’ behaviour using a hierarchy-based model, i.e. a hierarchy of activities and

a sequence of actions for each activity, capable of modelling a wide range of indoor

activities in residential and commercial applications. Furthermore, the SIMsis can

simulate several off-the-shelf sensors widely used in SIS applications, i.e.motion sen-

sors, pressure sensors, electricity sensors, and accelerometers. Finally, considering the

dataset of a real-world SIS application, the chapter showed that the replication of the

application in SIMsis (its digital twin) generates high-fidelity synthetic datasets in

terms of both occupants and sensor behaviours. Therefore, Chapter 3 and Chapter 4

fulfill the third requirement (R3).

In Chapter 5, a simulation-driven framework was proposed for the evaluation of dif-

ferent sensor configurations using the proposed simulation methodology. We argued

that most of the SIS applications require knowledge about occupants’ activities as

contextual information. Therefore, the sensor configuration deployment should gen-

erate distinct sensors’ reading patterns for each indoor activity to obtain an accurate

activity recognition algorithm. This structure can be viewed as an optimization prob-

lem, wherein an optimizer sequentially proposes candidate sensor configurations to

maximize the accuracy of an activity classifier as its objective function. The Bayesian

Optimization (BO) approach was proposed as the optimizer of this framework. We

demonstrated that BO is able to find sensor configurations that result, on average,

16% more accurate activity classifier in comparison to state-of-the-art methods, such

as Genetic Algorithm (GA) and greedy. We experimentally showed that BO outper-

1The IFC data model is an ISO International Standard, and an open architectural and building
data description specification.
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forms the previous methods because, in each iteration, it trains a surrogate model of

the objective function using its available local information of previous observations, as

opposed to the related work methods, which solely rely on the local information. The

surrogate model serves as a global information which effectively guides the optimizer

towards better sensor configurations. This framework satisfies the forth requirement

(R4). Furthermore, we showed that the proposed framework is scalable in terms of

the number and type of sensors. Finally, our experiments have demonstrated that

our framework’s performance remains consistent when its components are altered,

highlighting its modularity.

6.2 Future Work

We strongly believe there is still a long way to go to accomplish a genuine sensor

configuration evaluation framework, which leaves ample avenues for future work. In

this section, we discuss the open problems based on the insights we gained doing this

thesis.

6.2.1 Simulation Methodology

Sensor Model

Although high-fidelity, the SIMsis methodology is only evaluated using a limited real-

world dataset, where only LS sensor types were deployed. Much sophisticated sensor

modelling and a broader study are required to enhance the ability of the simulation

methodology to model both LS and IS sensor types realistically.

Space Model

The SIMsis uses IFC representation of indoor spaces for quickly building a digital twin

of an intended indoor space. Unfortunately, the IFC models of currently built build-

ings are not often available. Thus, designing such models might be time-consuming

and require specific skills in professional software tools like Revit. Currently, deep
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learning approaches are used to construct an IFC model of an indoor space using digi-

tal images [157]. Automatically generating IFC models is a promising future direction

as it promises more generalization of SIS simulation methodologies.

Agent Model

The agent model in SIMsis simulates a single occupant living in a residential building.

The agent model can be improved to support multi-agent scenarios where agents can

collaborate to accomplish activities. This will enhance the range of supported appli-

cations to commercial buildings such as offices. However, it requires a sophisticated

evaluation experiment.

6.2.2 Sensor Configuration Evaluation

The proposed Bayesian optimization can be studied in more detail to incorporate eval-

uating sensor configurations from different perspectives. This thesis considered the

SIS simulation and its contextual information representation a stochastic system and

modelled it as a black-box function f(x). Consequently, black-box optimization dis-

regards available knowledge about f(x) that might be useful for sensor configuration

evaluation. The knowledge can be used to evaluate sensor configurations from differ-

ent perspectives, such as robustness, i.e.analyzing the performance of the real-world

sensor configuration deployment, considering minor installation errors. In contrast

to black-box optimization, grey-box optimization, such as [9], models f(x) as a com-

bination of data and some theoretical structures. It has been shown in [9] that the

knowledge from the theoretical structure of f(x) supports the Bayesian optimization

method to explore/exploit the search space more effectively.

Moreover, applying transfer learning techniques is also promising. As [63] and [148]

show, datasets of similar tasks can train an acquisition function first and transfer

its knowledge to a similar optimization task can significantly increase the Bayesian

optimization performance. In sensor configuration evaluation, instead of learning
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the model from scratch, the idea is to use the model’s knowledge for specific areas,

e.g.kitchen and living room, of an indoor environment from previous tasks. In our

application, the model obtains the knowledge of the occupant’s trace in each room.

Therefore, it replicates highly experienced designers that learn several basic ”rules”

(also supported by [139]) through experience that certain areas require a specific

sensor configuration; for instance, placing pressure sensors on dining room chairs

ensures capturing useful data for dining activities.

The sensor configuration deployment requires maintenance from different aspects,

such as resource management based on occupants’ behaviour. Resource management

becomes important because it can significantly save energy consumption and has been

studied rigorously [71]. In the context of a sensor configuration for SIS applications,

a sequential decision-making strategy, such as a Reinforcement Learning (RL) agent,

can be employed to decide, based on the state of the occupants, which sensor to

hibernate/turn on.
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[120] B. B. Sánchez, R. Alcarria, Á. Sánchez-Picot, and D. Sánchez-de-Rivera, “A
methodology for the design of application-specific cyber-physical social sensing
co-simulators,” Sensors, vol. 17, no. 10, p. 2177, 2017.

[121] F. C. Sangogboye, K. Arendt, A. Singh, C. T. Veje, M. B. Kjaergaard, and
B. N. Jorgensen, “Performance comparison of occupancy count estimation and
prediction with common versus dedicated sensors for building model predictive
control,” Building Simulation, vol. 10, no. 6, pp. 829–843, 2017.

[122] K. Sanmugalingam and G. Coulouris, “A generic location event simulator,” in
International Conference on Ubiquitous Computing, Springer, 2002, pp. 308–
315.

173

https://doi.org/10.1145/346855.346870
http://doi.acm.org/10.1145/346855.346870
http://doi.acm.org/10.1145/346855.346870


[123] D. Schaumann, Y. E. Kalay, S. W. Hong, and D. Simeone, “Simulating human
behavior in not-yet built environments by means of event-based narratives,” in
Proceedings of the Symposium on Simulation for Architecture & Urban Design,
2015, pp. 5–12.

[124] Second life, https://secondlife.com/, Accessed: 2021-08-17.

[125] D. W. Seo, H. Kim, J. S. Kim, and J. Y. Lee, “Hybrid reality-based user expe-
rience and evaluation of a context-aware smart home,” Computers in Industry,
vol. 76, pp. 11–23, 2016.

[126] P. Sernani, D. Calvaresi, P. Calvaresi, M. Pierdicca, E. Morbidelli, and A. F.
Dragoni, “Testing intelligent solutions for the ambient assisted living in a sim-
ulator,” in Proceedings of the 9th ACM International Conference on PErvasive
Technologies Related to Assistive Environments, 2016, pp. 1–5.

[127] P. Sernani, F. Dalpiaz, A. F. Dragoni, and S. Brinkkemper, “Smart tales:
An awareness game for ambient assisted living,” in European Conference on
Ambient Intelligence, Springer, 2015, pp. 187–204.

[128] A. Shan, X. Xu, and Z. Cheng, “Target coverage in wireless sensor networks
with probabilistic sensors,” Sensors, vol. 16, no. 9, p. 1372, 2016.

[129] J. L. Silva, J. C. Campos, and M. D. Harrison, “Prototyping and analysing
ubiquitous computing environments using multiple layers,” International Jour-
nal of Human-Computer Studies, vol. 72, no. 5, pp. 488–506, 2014.

[130] Smartcondo™, https://www.ualberta.ca/health-sciences-education-research/
simulation-experiences/hserc-spaces/smart-condo, Accessed: 2018-12-09.

[131] D. Spoladore, S. Arlati, and M. Sacco, “Semantic and virtual reality-enhanced
configuration of domestic environments: The smart home simulator,” Mobile
Information Systems, vol. 2017, 2017.

[132] C. Stahl, J. Frey, J. Alexandersson, and B. Brandherm, “Synchronized reali-
ties,” Journal of Ambient Intelligence and Smart Environments, vol. 3, no. 1,
pp. 13–25, 2011.

[133] C. Stahl and T. Schwartz, “Modeling and simulating assistive environments in
3-d with the yamamoto toolkit,” in 2010 International Conference on Indoor
Positioning and Indoor Navigation, IEEE, 2010, pp. 1–6.

[134] J.-M. Su and C.-F. Huang, “An easy-to-use 3d visualization system for plan-
ning context-aware applications in smart buildings,” Computer Standards &
Interfaces, vol. 36, no. 2, pp. 312–326, 2014.

[135] S. Sundresh, W. Kim, and G. Agha, “SENS: A sensor, environment and net-
work simulator,” in Proceedings of the 37th Annual Symposium on Simulation,
ser. ANSS ’04, Washington, DC, USA: IEEE Computer Society, 2004, pp. 221–,
isbn: 0-7695-2110-X. [Online]. Available: http://dl.acm.org/citation.cfm?id=
987679.987699.

174

https://www.ualberta.ca/health-sciences-education-research/simulation-experiences/hserc-spaces/smart-condo
https://www.ualberta.ca/health-sciences-education-research/simulation-experiences/hserc-spaces/smart-condo
http://dl.acm.org/citation.cfm?id=987679.987699
http://dl.acm.org/citation.cfm?id=987679.987699


[136] J. Synnott, L. Chen, C. Nugent, and G. Moore, “Ie sim–a flexible tool for the
simulation of data generated within intelligent environments,” in International
Joint Conference on Ambient Intelligence, Springer, 2012, pp. 373–378.

[137] J. Synnott, L. Chen, C. D. Nugent, and G. Moore, “The creation of simulated
activity datasets using a graphical intelligent environment simulation tool,”
in 2014 36th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, IEEE, 2014, pp. 4143–4146.

[138] J. Synnott, C. Nugent, and P. Jeffers, “Simulation of smart home activity
datasets,” Sensors, vol. 15, no. 6, pp. 14 162–14 179, 2015.

[139] B. L. Thomas, A. S. Crandall, and D. J. Cook, “A genetic algorithm approach
to motion sensor placement in smart environments,” Journal of reliable intel-
ligent environments, vol. 2, no. 1, pp. 3–16, 2016.

[140] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005.

[141] A. Trivedi, J. Gummeson, D. Irwin, D. Ganesan, and P. Shenoy, “Isched-
ule: Campus-scale hvac scheduling via mobile wifi monitoring,” in Proc. 8th
International Conference on Future Energy Systems (e-Energy), ACM, 2017,
pp. 132–142.

[142] Vaalid project : Accessibility and usability validation framework for aal in-
teraction design process, https://pm4health.com/projects/vaalid/, Accessed:
2021-08-17.

[143] T. Van Nguyen, J. G. Kim, and D. Choi, “Iss: The interactive smart home
simulator,” in 2009 11th international conference on advanced communication
technology, IEEE, vol. 3, 2009, pp. 1828–1833.

[144] A. Vasilateanu, I. A. Popescu, A. S. Cergan, and N. Goga, “Smart home simula-
tion system,” in 2016 IEEE International Symposium on Systems Engineering
(ISSE), IEEE, 2016, pp. 1–5.

[145] C. Velasquez, C. Soares, R. Morla, R. S. Moreira, J. Torres, and P. Sobral, “A
3d simulation framework for safe ambient-assisted home care,” in Proceedings
of the fifth international conference on mobile ubiquitous computing, systems,
services and technologies, 2011, pp. 61–66.

[146] F. Veronese, D. Proserpio, S. Comai, M. Matteucci, and F. Salice, “Sharon: A
simulator of human activities, routines and needs.,” in AAATE Conf., 2015,
pp. 560–566.

[147] I. Vlasenko, I. Nikolaidis, and E. Stroulia, “The smart-condo: Optimizing sen-
sor placement for indoor localization,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 45, no. 3, pp. 436–453, 2014.

[148] M. Volpp et al., “Meta-learning acquisition functions for transfer learning in
bayesian optimization,” arXiv preprint arXiv:1904.02642, 2019.

175



[149] Z. Wang, H. Xie, Z. Hu, D. Li, J. Wang, and W. Liang, “Node coverage
optimization algorithm for wireless sensor networks based on improved grey
wolf optimizer,” Journal of Algorithms & Computational Technology, vol. 13,
p. 1 748 302 619 889 498, 2019.

[150] D. Weitz, D. Marıa, F. Lianza, N. Schmidt, and J. P. Nant, “Smart home simu-
lation model for synthetic sensor datasets generation,” Sistemas y Telemática,
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